3D printable elastomers with exceptional strength and toughness – Nature

-


  • Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface. Nat. Commun. 12, 6070 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herzberger, J., Sirrine, J. M., Williams, C. B. & Long, T. E. Polymer design for 3D printing elastomers: recent advances in structure, properties, and printing. Prog. Polym. Sci. 97, 101144 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat. Chem. 15, 1773–1779 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. 3D printing of high viscosity UV-curable resin for highly stretchable and resilient elastomer. Adv. Mater. 35, 2304430 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wallin, T. J. et al. 3D printable tough silicone double networks. Nat. Commun. 11, 4000 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, D. K. et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 29, 1606000 (2017).

    Article 

    Google Scholar
     

  • Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Sci. Robot. 8, eadd1053 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, X. et al. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 366, 1376–1379 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 33, 2101498 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, R. et al. Extremely strong and tough biodegradable poly(urethane) elastomers with unprecedented crack tolerance via hierarchical hydrogen-bonding interactions. Adv. Mater. 35, 2212130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Molecularly engineered unparalleled strength and supertoughness of poly(urea-urethane) with shape memory and clusterization-triggered emission. Adv. Mater. 34, 2205763 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Petersen, S. R. et al. Ultra-tough elastomers from stereochemistry-directed hydrogen bonding in isosorbide-based polymers. Angew. Chem. Int. Ed. 61, e202115904 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noda, I., Dowrey, A. E., Marcott, C., Story, G. M. & Ozaki, Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 54, 236A–248A (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, W., Wu, B., Sun, S. & Wu, P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12, 4082 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Recent progress in double network elastomers: one plus one is greater than two. Adv. Funct. Mater. 32, 2110244 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Mechanically interlocked networks cross-linked by a molecular necklace. Nat. Commun. 13, 1393 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, Y., Paunović, N. & Leroux, J. C. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv. Funct. Mater. 32, 2109864 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Feng, H. et al. Ultratough yet dynamic crystalline poly(thiourethane) network directly from low viscosity precursors. CCS Chem. 6, 682–692 (2024).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Latest news

    These Are the 10 DOGE Operatives Inside the Social Security Administration

    The SSA did not respond to a request from WIRED about what the DOGE operatives are working on...

    Sesame, the startup behind the viral virtual assistant Maya, releases its base AI model

    AI company Sesame has released the base model that powers Maya, the impressively realistic voice assistant. The model, which is 1 billion...

    Y Combinator’s police surveillance darling Flock Safety raises $275M at $7.5B valuation

    Flock Safety and one of its long-time VCs, Bedrock Capital, announced Thursday that the startup raised a fresh...

    Inside Elon Musk’s ‘Digital Coup’

    Musk and Trump’s relationship was cemented on July 13, 2024, when a would-be assassin came within inches of...

    What’s Lost When the Human Drivers Are Gone?

    This week on Uncanny Valley, we look ahead into a future where driverless cars are mainstream. Source link

    Must read

    You might also likeRELATED
    Recommended to you