Observation and quantification of the pseudogap in unitary Fermi gases – Nature

-


  • Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ. Science 273, 325–329 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trivedi, N. & Randeria, M. Deviations from Fermi-liquid behavior above Tc in 2D short coherence length superconductors. Phys. Rev. Lett. 75, 312 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Stajic, J. et al. Nature of superfluidity in ultracold Fermi gases near Feshbach resonances. Phys. Rev. A 69, 063610 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Zwerger, W. (ed.) The BCS–BEC Crossover and the Unitary Fermi Gas (Springer, 2012).

  • Randeria, M. & Taylor, E. Crossover from Bardeen–Cooper–Schrieffer to Bose–Einstein condensation and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science 305, 1128–1130 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schunck, C. H., Shin, Y., Schirotzek, A. & Ketterle, W. Determination of the fermion pair size in a resonantly interacting superfluid. Nature 454, 739–743 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murthy, P. A. et al. High-temperature pairing in a strongly interacting two-dimensional Fermi gas. Science 359, 452–455 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, J. T., Gaebler, J. P. & Jin, D. S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Feld, M., Fröhlich, B., Vogt, E., Koschorreck, M. & Köhl, M. Observation of a pairing pseudogap in a two-dimensional Fermi gas. Nature 480, 75–78 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, E. J. Review of pseudogaps in strongly interacting Fermi gases. Rep. Prog. Phys. 80, 104401 (2017).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Schneider, W. & Randeria, M. Universal short-distance structure of the single-particle spectral function of dilute Fermi gases. Phys. Rev. A 81, 021601 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nascimbène, S. et al. Fermi-liquid behavior of the normal phase of a strongly interacting gas of cold atoms. Phys. Rev. Lett. 106, 215303 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mukherjee, B. et al. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Baird, L., Wang, X., Roof, S. & Thomas, J. E. Measuring the hydrodynamic linear response of a unitary Fermi gas. Phys. Rev. Lett. 123, 160402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baym, G., Pethick, C. J., Yu, Z. & Zwierlein, M. W. Coherence and clock shifts in ultracold Fermi gases with resonant interactions. Phys. Rev. Lett. 99, 190407 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mukherjee, B. et al. Spectral response and contact of the unitary Fermi gas. Phys. Rev. Lett. 122, 203402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Robaszkiewicz, S., Micnas, R. & Chao, K. A. Thermodynamic properties of the extended Hubbard model with strong intra-atomic attraction and an arbitrary electron density. Phys. Rev. B 23, 1447 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Sá de Melo, C. A. R., Randeria, M. & Engelbrecht, J. R. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Q., He, Y., Chien, C.-C. & Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates. Rep. Prog. Phys. 72, 122501 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ku, M. J. H., Sommer, A. T., Cheuk, L. W. & Zwierlein, M. W. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563–567 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haussmann, R., Punk, M. & Zwerger, W. Spectral functions and rf response of ultracold fermionic atoms. Phys. Rev. A 80, 063612 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Carcy, C. et al. Contact and sum rules in a near-uniform Fermi gas at unitarity. Phys. Rev. Lett. 122, 203401 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. & Levin, K. Momentum resolved radio frequency spectroscopy in trapped Fermi gases. Phys. Rev. Lett. 102, 190402 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Biss, H. et al. Excitation spectrum and superfluid gap of an ultracold Fermi gas. Phys. Rev. Lett. 128, 100401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magierski, P., Wlazłowski, G., Bulgac, A. & Drut, J. E. Finite-temperature pairing gap of a unitary Fermi gas by quantum Monte Carlo calculations. Phys. Rev. Lett. 103, 210403 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS–BEC crossover. Phys. Rev. A 75, 023610 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kondo, T. et al. Point nodes persisting far beyond Tc in Bi2212. Nat. Commun. 6, 7699 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Esslinger, T. Fermi–Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P. & Törmä, P. The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Rep. Prog. Phys. 81, 046401 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pasienski, M. & DeMarco, B. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express 16, 2176–2190 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Murthy, P. A. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ries, M. G. et al. Observation of pair condensation in the quasi-2D BEC–BCS crossover. Phys. Rev. Lett. 114, 230401 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ketterle, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cim. 31, 247–422 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Duan, Z.-X., Wu, W.-T., Lin, Y.-T. & Yang, S.-J. Simple and active magnetic-field stabilization for cold atom experiments. Rev. Sci. Instrum. 93, 123201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borkowski, M. et al. Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances. Rev. Sci. Instrum. 94, 073202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X.-T. et al. Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum. 90, 054708 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics, Vol. I, 522–523 (Wiley-VCH, 2020).

  • Riou, J.-F. et al. Theoretical tools for atom-laser-beam propagation. Phys. Rev. A 77, 033630 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Horikoshi, M. et al. Appropriate probe condition for absorption imaging of ultracold 6Li atoms. J. Phys. Soc. Japan 86, 104301 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ockeloen, C. F., Tauschinsky, A. F., Spreeuw, R. J. C. & Whitlock, S. Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Stancik, A. L. & Brauns, E. B. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 47, 66–69 (2008).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Latest news

    DOGE May Have Misused Social Security Data, DOJ Admits

    Law enforcement authorities in the United States have for years circumvented the US Constitution’s Fourth Amendment by purchasing...

    Gear News of the Week: Apple’s AI Wearable and a Phone That Can Boot Android, Linux, and Windows

    The NexPhone is a rugged device powered by a Qualcomm QCM64490 chip with a reportedly long support road...

    Watch Party: The Best TAG in Years, a ’60s Sensation, and Omega Goes All White

    The 44-mm Big Bang Tourbillon GOAT Edition's case is a special Hublot-developed composite made from Lacoste polos and...

    This Autonomous Aquatic Robot Is Smaller Than a Grain of Salt

    Miniaturization has long been a challenge in the history of robotics.While engineers have made great strides in the...

    This Mega Snowstorm Will Be a Test for the US Supply Chain

    Here it comes. Up to two thirds of the US is facing down the threat of serious snow,...

    A Renter-Friendly Filter that Removes PFAS Is On Sale Right Now

    Water filters are a booming fear-based economy. But people have good reasons to be leery of their drinking...

    Must read

    You might also likeRELATED
    Recommended to you