Dirac mass induced by optical gain and loss – Nature

-


  • Wilczek, F. Origins of mass. Cent. Eur. J. Phys. 10, 1021–1037 (2012).

    CAS 

    Google Scholar
     

  • Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clay Mathematics Institute. Yang-Mills and the mass gap. Clay Mathematics Institute https://www.claymath.org/millennium/yang-mills-the-maths-gap/ (2023).

  • Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having \({\mathcal{P}}{\mathcal{T}}\) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. \({\mathcal{P}}{\mathcal{T}}\)-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, H., Wang, Q., Zhang, B. & Chong, Y. D. Non-Hermitian Dirac cones. Phys. Rev. Lett. 124, 236403 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Terh, Y. Y., Banerjee, R., Xue, H. & Chong, Y. D. Scattering dynamics and boundary states of a non-Hermitian Dirac equation. Phys. Rev. B 108, 045419 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holstein, B. R. Klein’s paradox. Am. J. Phys. 66, 507–512 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dombey, N. & Calogeracos, A. Seventy years of the Klein paradox. Phys. Rep. 315, 41–58 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Direct observation of Klein tunneling in phononic crystals. Science 370, 1447–1450 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun. 11, 2180 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lustig, E. et al. in Proc. 2021 Conference on Lasers and Electro-Optics (eds Kang, J. et al.) FF2H.1 (Optica Publishing Group, 2021).

  • Moussa, H. et al. Observation of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 19, 863–868 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Z. et al. Quantum time reflection and refraction of ultracold atoms. Nat. Photon. 18, 68–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Leykam, D., Rechtsman, M. & Chong, Y. Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators. Phys. Rev. Lett. 117, 013902 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Özdemir, Ş. K. Fermi arcs connect topological degeneracies. Science 359, 995–996 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wimmer, M. et al. Optical diametric drive acceleration through action–reaction symmetry breaking. Nat. Phys. 9, 780–784 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Miri, M.-A., Regensburger, A., Peschel, U. & Christodoulides, D. N. Optical mesh lattices with \({\mathcal{P}}{\mathcal{T}}\) symmetry. Phys. Rev. A 86, 023807 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ye, H. et al. Reconfigurable refraction manipulation at synthetic temporal interfaces with scalar and vector gauge potentials. Proc. Natl Acad. Sci. USA 120, e2300860120 (2023).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photon. 12, 765–773 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Weidemann, S., Kremer, M., Longhi, S. & Szameit, A. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature 601, 354–359 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackiw, R. & Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 13, 3398–3409 (1976).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Angelakis, D. G., Das, P. & Noh, C. Probing the topological properties of the Jackiw-Rebbi model with light. Sci. Rep. 4, 6110 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takata, K. & Notomi, M. Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121, 213902 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    If You Take Your At-Home Work Setup Seriously, You Need a Laptop Docking Station

    Other Laptop Docking Stations to ConsiderWe test a lot of laptop docking stations and, quite frankly, most of...

    My Favorite Floodlight Security Camera Is on Sale for Prime Day

    There are tons of great home security deals this Prime Day, but my favorite floodlight security camera shines...

    Microsoft and OpenAI’s AGI Fight Is Bigger Than a Contract

    I first learned about The Clause from Microsoft CEO Satya Nadella. During an interview with him in May...

    The iPad Is the Tablet to Buy, and It’s Under $300 Right Now

    iPads have long been the best tablets, and right now, for Amazon Prime Day, you can get Apple's...

    5 Big EV Takeaways From Trump’s ‘One Big Beautiful Bill’

    If you’re an electric vehicle enthusiast, President Donald Trump and congressional Republicans’ One Big Beautiful Bill (OBBB) is...

    Tornado Cash Made Crypto Anonymous. Now One of Its Creators Faces Trial

    A large portion of the trial, legal experts say, will focus on whether Storm intended for Tornado Cash...

    Must read

    You might also likeRELATED
    Recommended to you