IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge University Press, 2022).
Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).
Kelemen, P., Benson, S. M., Pilorgé, H., Psarras, P. & Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 1, 9 (2019).
Smith, S. et al. The State of Carbon Dioxide Removal 1st edn (Univ. Manchester, 2023).
Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).
National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2019).
Lackner, K. S. Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Environ. Res. 27, 193–232 (2002).
International Energy Agency. Direct Air Capture 2022: A Key Technology for Net Zero (IEA, 2022).
Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).
McQueen, N., Ghoussoub, M., Mills, J. & Scholten, M. A Scalable Direct Air Capture Process Based on Accelerated Weathering of Calcium Hydroxide (Heirloom, 2022).
Stern, M. C., Simeon, F., Herzog, H. & Hatton, T. A. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. 6, 2505–2517 (2013).
Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Primers 2, 68 (2022).
Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).
Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).
McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).
White, A. F. & Brantley, S. L. Chemical Weathering Rates of Silicate Minerals (Walter de Gruyter, 2018).
Olajire, A. A. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 109, 364–392 (2013).
Emerson, S. & Hedges, J. Chemical Oceanography and the Marine Carbon Cycle (Cambridge Univ. Press, 2008).
Kelemen, P. B. et al. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: review and new insights. Chem. Geol. 550, 119628 (2020).
Stillings, M., Shipton, Z. K. & Lunn, R. J. Mechanochemical processing of silicate rocks to trap CO2. Nat. Sustain. 6, 780–788 (2023).
Farina, V. et al. CO2 hydrogenation induced by mechanochemical activation of olivine with water under CO2 atmosphere. Front. Energy Res. 7, 107 (2019).
Summers, C. A., Dahlin, D. C., Rush, G. E., O’Connor, W. K. & Gerdemann, S. J. Grinding methods to enhance the reactivity of olivine. Min. Metall. Explor. 22, 140–144 (2005).
Renforth, P., von Strandmann, P. A. E. P. & Henderson, G. M. The dissolution of olivine added to soil: Implications for enhanced weathering. Appl. Geochem. 61, 109–118 (2015).
Vink, J., Giesen, D. & Ahlrichs, E. Olivine Weathering in Field Trials: Effect of Natural Environmental Conditions on Mineral Dissolution and the Potential Toxicity of Nickel (Deltares, 2022).
Wikedzi, A. W. Optimization and Performance of Grinding Circuits: The Case of Buzwagi Gold Mine (BGM). PhD thesis, Technische Univ/ Bergakademie Freiberg (2018).
Orumwense, O. A. & Forssberg, E. Superfine and ultrafine grinding—a literature survey. Miner. Process. Extr. Metall. Rev. 11, 107–127 (1992).
O’Connor, W. et al. Aqueous Mineral Carbonation. Report No. DOE/ARC-TR-04-002 (Department of Energy, 2005).
Haque, F., Santos, R. M. & Chiang, Y. W. CO2 sequestration by wollastonite- amended agricultural soils–An Ontario field study. Int. J. Greenhouse Gas Control 97, 103017 (2020).
US Department of the Interior & US Geological Survey. Mineral Commodity Summaries 2024 (USGS, 2024).
Rausis, K., Stubbs, A. R., Power, I. M. & Paulo, C. Rates of atmospheric CO2 capture using magnesium oxide powder. Int. J. Greenhouse Gas Control 119, 103701 (2022).
Harrison, A. L., Power, I. M. & Dipple, G. M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47, 126–134 (2013).
Erans, M., Nabavi, S. A. & Manović, V. Carbonation of lime-based materials under ambient conditions for direct air capture. J. Clean. Prod. 242, 118330 (2020).
Triantafyllou, G., Alevizos, G. & Stratakis, A. Experimental study of the carbonation process in natural hydraulic lime binders. In Proc. Annual Meeting of DGGV-DMG, GeoBerlin, 373–374 (GFZ German Research Centre for Geosciences, 2015).
Bale, C. W. et al. Reprint of: FactSage thermochemical software and databases, 2010–2016. Calphad 55, 1–19 (2016).
Swift, W., Panek, A., Smith, G., Vogel, G. & Jonke, A. Decomposition of calcium sulfate: a review of the literature. Report No. 7224692 (ERDA, 1976).
Gupta, K., Singh, S. & Rao, M. R. Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5. Nano Energy 11, 146–153 (2015).
Hollingbery, L. A. & Hull, T. R. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim. Acta 509, 1–11 (2010).
Karunadasa, K. S. P., Manoratne, C. H., Pitawala, H. M. T. G. A. & Rajapakse, R. M. G. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J. Phys. Chem. Solids 134, 21–28 (2019).
Engström, F., Adolfsson, D., Samuelsson, C., Sandström, Å. & Björkman, B. A study of the solubility of pure slag minerals. Miner. Eng. 41, 46–52 (2013).
Strandkvist, I., Björkman, B. & Engström, F. Synthesis and dissolution of slag minerals – a study of β-dicalcium silicate, pseudowollastonite and monticellite. Can. Metall. Quart. 54, 446–454 (2015).
Reershemius, T. et al. Initial validation of a soil-based mass-balance approach for empirical monitoring of enhanced rock weathering rates. Environ. Sci. Technol. 57, 19497–19507 (2023).
Gupta, A. & Yan, D. S. Mineral Processing Design and Operations: An Introduction (eds Gupta, A. & Yan, D.) (Elsevier, 2016).
Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).
Weber, J. N. & Greer, R. T. Dehydration of serpentine: heat of reaction and reaction kinetics at PH2O = 1 atm. Am. Mineral. 50, 450–464 (1965).
Werner, M., Hariharan, S. & Mazzotti, M. Flue gas CO2 mineralization using thermally activated serpentine: from single-to double-step carbonation. Phys. Chem. Chem. Phys. 16, 24978–24993 (2014).
Werner, M., Hariharan, S., Zingaretti, D., Baciocchi, R. & Mazzotti, M. Dissolution of dehydroxylated lizardite at flue gas conditions: I. Experimental study. Chem. Eng. J. 241, 301–313 (2014).
Su, C. et al. Thermodynamic properties of San Carlos olivine at high temperature and high pressure. Acta Geochimica 37, 171–179 (2018).