Inter-brain neural dynamics in biological and artificial intelligence systems – Nature

-


  • Chen, P. & Hong, W. Neural circuit mechanisms of social behavior. Neuron 98, 16–30 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury, L. & Hong, W. A multi-brain framework for social interaction. Trends Neurosci. 43, 651–666 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czeszumski, A. et al. Hyperscanning: a valid method to study neural inter-brain underpinnings of social interaction. Front. Hum. Neurosci. 14, 39 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, G. & Fairhurst, M. T. Reciprocity and alignment: quantifying coupling in dynamic interactions. R. Soc. Open Sci. 8, 210138 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, G., Lachat, F., Martinerie, J., Nadel, J. & George, N. From social behaviour to brain synchronization: review and perspectives in hyperscanning. IRBM 32, 48–53 (2011).

    Article 

    Google Scholar
     

  • Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y. & Feldman, R. Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7, 17060 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tseng, P.-H., Rajangam, S., Lehew, G., Lebedev, M. A. & Nicolelis, M. A. L. Interbrain cortical synchronization encodes multiple aspects of social interactions in monkey pairs. Sci. Rep. 8, 4699 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. & Yartsev, M. M. Correlated neural activity across the brains of socially interacting bats. Cell 178, 413–428 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J. & Kurth-Nelson, Z. Deep reinforcement learning and its neuroscientific implications. Neuron 107, 603–616 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34, 26–38 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Busoniu, L., Babuska, R. & Schutter, B. D. A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. C 38, 156–172 (2008).

    Article 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Başar, T. in Handbook of Reinforcement Learning and Control (eds Vamvoudakis, K. G. et al.) 321–384 (2021).

  • Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murugan, M. et al. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171, 1663–1677 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheggia, D. et al. Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nat. Neurosci. 23, 47–60 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kingsbury, L. et al. Cortical representations of conspecific sex shape social behavior. Neuron 107, 941–953 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frost, N. A., Haggart, A. & Sohal, V. S. Dynamic patterns of correlated activity in the prefrontal cortex encode information about social behavior. PLoS Biol. 19, e3001235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monte, O. D. et al. Widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks. Neuron 110, 2183–2197 (2022).

    Article 

    Google Scholar
     

  • Li, S. W. et al. Frontal neurons driving competitive behaviour and ecology of social groups. Nature 603, 661–666 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Padilla-Coreano, N., Tye, K. M. & Zelikowsky, M. Dynamic influences on the neural encoding of social valence. Nat. Rev. Neurosci. 23, 535–550 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merre, P. L., Ährlund-Richter, S. & Carlén, M. The mouse prefrontal cortex: unity in diversity. Neuron 109, 1925–1944 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Abdi, H. & Williams, L. J. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol. Biol. 930, 549–579 (2012).

    Article 

    Google Scholar
     

  • Lopes-dos-Santos, V., Ribeiro, S. & Tort, A. B. L. Detecting cell assemblies in large neuronal populations. J Neurosci. Methods 220, 149–166 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotelling, H. Relations between two sets of variates. Biometrika 28, 321 (1936).

    Article 

    Google Scholar
     

  • Liang, E. et al. RLlib: abstractions for distributed reinforcement learning. In Proc. 35th International Conference on Machine Learning 80, 3053–3062 (PMLR, 2018).

  • Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://doi.org/10.48550/arxiv.1707.06347 (2017).

  • Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattori, R., Kuchibhotla, K. V., Froemke, R. C. & Komiyama, T. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat. Neurosci. 20, 1199–1208 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, G., Nadel, J., Soussignan, R., Martinerie, J. & Garnero, L. Inter-brain synchronization during social interaction. PLoS ONE 5, e12166 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barraza, P., Pérez, A. & Rodríguez, E. Brain-to-brain coupling in the gamma-band as a marker of shared intentionality. Front. Hum. Neurosci. 14, 295 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fakhar, K. & Hilgetag, C. C. Systematic perturbation of an artificial neural network: a step towards quantifying causal contributions in the brain. PLoS Comput. Biol. 18, e1010250 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowley, B. R. et al. Mapping model units to visual neurons reveals population code for social behaviour. Nature 629, 1100–1108 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao, J. C. Considerations in using recurrent neural networks to probe neural dynamics. J. Neurophysiol. 122, 2504–2521 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M., Wu, Y. E., Jiang, M. & Hong, W. Cortical regulation of helping behaviour towards others in pain. Nature 626, 136–144 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. E. et al. Neural control of affiliative touch in prosocial interaction. Nature 599, 262–267 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari, R. & Agrawal, R. K. An Introductory Study on Time Series Modeling and Forecasting (Lambert Academic Publishing, 2013).

  • Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Rep. 21, 1102–1115 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lerer, A. & Peysakhovich, A. Maintaining cooperation in complex social dilemmas using deep reinforcement learning. Preprint at https://doi.org/10.48550/arxiv.1707.01068 (2017).

  • Foerster, J. N. et al. Learning with opponent-learning awareness. In Proc. 17th International Conference on Autonomous Agents and MultiAgent Systems 122–130 (ACM, 2018).

  • Lu, C., Willi, T., de Witt, C. S. & Foerster, J. Model-free opponent shaping. In Proc. 39th International Conference on Machine Learning Vol. 162, 14398–14411 (PMLR, 2022).

  • Zhou, J. L., Hong, W. & Kao, J. C. Reciprocal reward influence encourages cooperation from self-interested agents. In Proc. 38th Conference on Neural Information Processing Systems 59491–59512 (Curran Associates, 2024).

  • Agapiou, J. P. et al. Melting Pot 2.0. Preprint at https://doi.org/10.48550/arxiv.2211.13746 (2022).

  • Espeholt, L. et al. IMPALA: scalable distributed deep-RL with importance weighted actor–learner architectures. In Proc. 35th International Conference on Machine Learning (PMLR, 2018).



  • Source link

    Latest news

    Israeli quantum startup Qedma just raised $26 million, with IBM joining in

    Despite their imposing presence, quantum computers are delicate beasts, and their errors are among the main bottlenecks that...

    From Sensual Butt Songs to Santa’s Alleged Coke Habit: AI Slop Music Is Getting Harder to Avoid

    AI slop is flooding every single digital platform, and music streaming services are no exception—so much so, even...

    A Former Chocolatier Shares the 7 Kitchen Scales She Recommends

    Don’t underestimate the benefits of a mechanical scale. While it may not be exactly convenient in size (it’s...

    The Promise and Peril of Digital Security in the Age of Dictatorship

    Rodríguez and his collective received digital security training from Amate, another LGBTIQ+ organization that advocates nationally. Since May,...

    How we’re rebuilding the Weizmann Institute — and our hopes for a better future

    A little before 3 a.m. on 15 June, two Iranian missiles hit the Weizmann Institute of Science...

    Must read

    You might also likeRELATED
    Recommended to you