Li, J., Amatuni, A. & Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol. 55, 111–118 (2020).
Romero, E. et al. Enzymatic late-stage modifications: better late than never. Angew. Chem. Int. Ed. 60, 16824–16855 (2021).
Bayer, T., Wu, S., Snajdrova, R., Baldenius, K. & Bornscheuer, U. T. An update: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 64, e202505976 (2025).
Marshall, J. R., Mangas-Sanchez, J. & Turner, N. J. Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron 82, 131926 (2021).
Yang, J., Li, F.-Z. & Arnold, F. H. Opportunities and challenges for machine learning-assisted enzyme engineering. ACS Cent. Sci. 10, 226–241 (2024).
Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).
Buller, R. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).
Garzón-Posse, F., Becerra-Figueroa, L., Hernández-Arias, J. & Gamba-Sánchez, D. Whole cells as biocatalysts in organic transformations. Molecules 23, 1265 (2018).
Tibrewal, N. & Tang, Y. Biocatalysts for natural product biosynthesis. Annu. Rev. Chem. Biomol. Eng. 5, 347–366 (2014).
Roiban, G.-D. et al. Development of an enzymatic process for the production of (R)-2-butyl-2-ethyloxirane. Org. Process Res. Dev. 21, 1302–1310 (2017).
Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).
Tobin, P. H., Richards, D. H., Callender, R. A. & Wilson, C. J. Protein engineering: a new frontier for biological therapeutics. Curr. Drug. Metab. 15, 743–756 (2014).
Novick, S. J. et al. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal. 11, 3762–3770 (2021).
Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).
Yu, T. et al. Enzyme function prediction using contrastive learning. Science 379, 1358–1363 (2023).
Hon, J. et al. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Res. 48, W104–W109 (2020).
Schnoes, A. M., Brown, S. D., Dodevski, I. & Babbitt, P. C. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 5, e1000605 (2009).
Robertson, D. E. et al. Exploring nitrilase sequence space for enantioselective catalysis. Appl. Environ. Microbiol. 70, 2429–2436 (2004).
Wahler, D., Badalassi, F., Crotti, P. & Reymond, J.-L. Enzyme fingerprints by fluorogenic and chromogenic substrate arrays. Angew. Chem. Int. Ed. 40, 4457–4460 (2001).
Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).
Fansher, D. J., Besna, J. N., Fendri, A. & Pelletier, J. N. Choose your own adventure: a comprehensive database of reactions catalyzed by cytochrome P450 BM3 variants. ACS Catal. 14, 5560–5592 (2024).
Ma, E. J. et al. Machine-directed evolution of an imine reductase for activity and stereoselectivity. ACS Catal. 11, 12433–12445 (2021).
Ao, Y.-F. et al. Structure- and data-driven protein engineering of transaminases for improving activity and stereoselectivity. Angew. Chem. Int. Ed. 62, e202301660 (2023).
Supekar, S. et al. A machine learning-guided approach to navigate the substrate activity scope of galactose oxidase: application in the conversion of pharmaceutically relevant bulky secondary alcohols. ACS Catal. 14, 17233–17243 (2024).
King, B. R., Sumida, K. H., Caruso, J. L., Baker, D. & Zalatan, J. G. Computational stabilization of a non-heme iron enzyme enables efficient evolution of new function. Angew. Chem. Int. Ed. 64, e202414705 (2025).
Mou, Z. et al. Machine learning-based prediction of enzyme substrate scope: application to bacterial nitrilases. Proteins 89, 336–347 (2021).
Yang, M. et al. Functional and informatics analysis enables glycosyltransferase activity prediction. Nat. Chem. Biol. 14, 1109–1117 (2018).
Kroll, A., Ranjan, S., Engqvist, M. K. M. & Lercher, M. J. A general model to predict small molecule substrates of enzymes based on machine and deep learning. Nat. Commun. 14, 2787 (2023).
Goldman, S., Das, R., Yang, K. K. & Coley, C. W. Machine learning modeling of family wide enzyme-substrate specificity screens. PLoS Comput. Biol. 18, e1009853 (2022).
Wang, X., Quinn, D., Moody, T. S. & Huang, M. ALDELE: all-purpose deep learning toolkits for predicting the biocatalytic activities of enzymes. J. Chem. Inf. Model. 64, 3123–3139 (2024).
Busch, F., Brummund, J., Calderini, E., Schürmann, M. & Kourist, R. Cofactor generation cascade for α-ketoglutarate and Fe(II)-dependent dioxygenases. ACS Sustain. Chem. Eng. 8, 8604–8612 (2020).
Zwick, C. R. & Renata, H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat. Prod. Rep. 37, 1065–1079 (2020).
Gao, S. S., Naowarojna, N., Cheng, R., Liu, X. & Liu, P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat. Prod. Rep. 35, 792–837 (2018).
Hausinger, R. P. Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).
McLean, K. J., Luciakova, D., Belcher, J., Tee, K. L. & Munro, A. W. Biological diversity of cytochrome P450 redox partner systems. Adv. Exp. Med. Biol. 851, 299–317 (2015).
Schofield, C. J. & Zhang, Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. 9, 722–731 (1999).
Seide, S. et al. From enzyme to preparative cascade reactions with immobilized enzymes: tuning Fe(II)/α-ketoglutarate-dependent lysine hydroxylases for application in biotransformations. Catalysts 12, 354 (2022).
Hegg, E. L. & Que, L. Jr The 2-His-1-carboxylate facial triad — an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).
Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).
Fisher, B. F., Snodgrass, H. M., Jones, K. A., Andorfer, M. C. & Lewis, J. C. Site-selective C–H halogenation using flavin-dependent halogenases identified via family-wide activity profiling. ACS Cent. Sci. 5, 1844–1856 (2019).
Atkinson, H. J., Morris, J. H., Ferrin, T. E. & Babbitt, P. C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One 4, e4345 (2009).
Copp, J. N., Akiva, E., Babbitt, P. C. & Tokuriki, N. Revealing unexplored sequence-function space using sequence similarity networks. Biochemistry 57, 4651–4662 (2018).
Pyser, J. B. et al. Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J. Am. Chem. Soc. 141, 18551–18559 (2019).
Lima, S. T. et al. A widely distributed biosynthetic cassette is responsible for diverse plant side chain cross-linked cyclopeptides. Angew. Chem. Int. Ed. 62, e202218082 (2023).
Ju, S. et al. A biocatalytic platform for asymmetric alkylation of α-keto acids by mining and engineering of methyltransferases. Nat. Commun. 14, 5704 (2023).
Jacot-Descombes, L., Turcani, L. & Jorner, K. morfeus (computer software). https://github.com/digital-chemistry-laboratory/morfeus (accessed 29 August 2025).
Ropp, P. J., Kaminsky, J. C., Yablonski, S. & Durrant, J. D. Dimorphite-DL: an open-source program for enumerating the ionization states of drug-like small molecules. J. Cheminform. 11, 14 (2019).
Hastie, T., Tibshirani, R. & Friedman, J. in The Elements of Statistical Learning: Data Mining, Inference, and Prediction 605–624 (Springer, 2009).
Lyzhin, I., Ustimenko, A., Gulin, A. & Prokhorenkova, L. Which tricks are important for learning to rank? Proc. 40th Intl Conf. Machine Learning (ICML 2023), PMLR 202, 23264–23278 (2023).
Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021).
Kerkovius, J. K. et al. A pyridine dearomatization approach to the matrine-type lupin alkaloids. J. Am. Chem. Soc. 144, 15938–15943 (2022).
Xu, H., Zhao, J. & Renata, H. Discovery, characterization and synthetic application of a promiscuous nonheme iron biocatalyst with dual hydroxylase/desaturase activity. Angew. Chem. Int. Ed. 63, e202409143 (2024).
Bunno, R., Awakawa, T., Mori, T. & Abe, I. Aziridine formation by a FeII/α-ketoglutarate dependent oxygenase and 2-aminoisobutyrate biosynthesis in fungi. Angew. Chem. Int. Ed. 60, 15827–15831 (2021).
Paton, A. E. et al. Connecting chemical and protein sequence space to predict biocatalytic reactions (v0.1). Zenodo https://doi.org/10.5281/zenodo.16779318 (2024).