A 200-million-year delay in permanent atmospheric oxygenation

-


  • 1.

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Bekker, A. & Kaufman, A. J. Oxidative forcing of global climate change: a biogeochemical record across the oldest Paleoproterozoic ice age in North America. Earth Planet. Sci. Lett. 258, 486–499 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Rasmussen, B., Bekker, A. & Fletcher, I. R. Correlation of Paleoproterozoic glaciations based on U–Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173–180 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Warke, M. R. et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc. Natl Acad. Sci. USA 117, 13314–13320 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Catling, D., Zahnle, K. & McKay, C. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Hoffman, P. F. The Great Oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chem. Geol. 362, 143–156 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kasting, J. F. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Zahnle, K., Claire, M. W. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Guo, Q. et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37, 399–402 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Philippot, P. et al. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Killingsworth, B. A. et al. Constraining the rise of oxygen with oxygen isotopes. Nat. Comm. 10, 4924 (2019); author correction 11, 4996 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hammersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Cameron, E. M. Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrian oceans. Nature 304, 54–56 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Bekker, A., Karhu, J. A. & Kaufman, A. J. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambr. Res. 148, 145–180 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Coetzee, L. L., Beukes, N. J., Gutzmer, J. & Kakegawa, T. Links of organic carbon cycling and burial to depositional depth gradients and establishment of a snowball Earth at 2.3 Ga: evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. S. Afr. J. Geol. 109, 109–122 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the 2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Mills, B. et al. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318, 295–304 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Humbert, F. et al. Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa. Geophys. J. Int. 209, 842–865 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Clarkson, M. O., Poulton, S. W., Guilbaud, R. & Wood, R. A. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–122 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Izon, G. et al. Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431, 264–273 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Bekker, A. in Encyclopedia of Astrobiology (eds Gargaud, M. et al.) 1399–1404 (Springer, 2014).

  • 41.

    Coetzee, L. L. Genetic Stratigraphy of the Paleoproterozoic Pretoria Group in the Western Transvaal. MSc thesis, Rand Afrikaans Univ. (2001).

  • 42.

    Visser, J. N. J. The Timeball Hill Formation at Pretoria—a prograding shore-line deposit. Annals Geol. Surv. Pretoria 9, 115–118 (1972).


    Google Scholar
     

  • 43.

    Eriksson, K. A. The Timeball Hill Formation—a fossil delta. J. Sediment. Res. 43, 1046–1053 (1973).

    Article 

    Google Scholar
     

  • 44.

    Eriksson, P. G. & Reczko, B. F. F. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sedim. Geol. 120, 319–335 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Eriksson, P. G. et al. The Transvaal sequence: an overview. J. Afr. Earth Sci. 16, 25–51 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Bekker, A., Krapež, B. & Karhu, J. A. Correlation of the stratigraphic cover of the Pilbara and Kaapvaal cratons recording the lead up to Paleoproterozoic Icehouse and the GOE. Earth Sci. Rev. 211, 103389 (2020).

    Article 

    Google Scholar
     

  • 47.

    Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J. & Holland, H. D. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225, 43–52 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Bekker, A. et al. Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am. J. Sci. 301, 261–285 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Schröder, S., Beukes, N. J. & Armstrong, R. A. Detrital zircon constraints on the tectono-stratigraphy of the Paleoproterozoic Pretoria Group, South Africa. Precambr. Res. 278, 362–393 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Moore, J. M., Tsikos, H. & Polteau, S. Deconstructing the Transvaal Supergroup. South Africa: implications for Palaeoproterozoic palaeoclimate models. J. Afr. Earth Sci. 33, 437–444 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 51.

    Van Kranendonk, M. & Mazumder, R. Two Paleoproterozoic glacio-eustatic cycles in the Turee Creek Group, Western Australia. Geol. Soc. Am. Bull. 127, 596–607 (2015).

    Article 

    Google Scholar
     

  • 52.

    Krapež, B., Müller, S. G., Fletcher, I. R. & Rasmussen, B. A tale of two basins? Stratigraphy and detrital zircon provenance of the Palaeoproterozoic Turee Creek and Horseshoe basins of Western Australia. Precambr. Res. 294, 67–90 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 53.

    Cui, H. et al. Searching for the Great Oxidation Event in North America: a reappraisal of the Huronian Supergroup by SIMS sulfur four-isotope analysis. Astrobiology 18, 519–538 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 56.

    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 57.

    Poulton, S. W. The Iron Speciation Paleoredox Proxy (eds Lyons, T. et al.) (Cambridge Univ. Press, 2021).

  • 58.

    Raiswell, R. & Canfield, D. E. Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochim. Cosmochim. Acta 60, 2777–2787 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 60.

    Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambr. Res. 317, 196–210 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 61.

    Alcott, L. J. et al. Development of iron speciation reference materials for paleoredox analysis. Geostand. Geoanal. Res. 44, 581–591 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Johnston, D. T. et al. Placing an upper limit on cryptic marine sulphur cycling. Nature 513, 530–533 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Cheney, E. S. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of Southern Africa and its equivalent in Western Australia. Precambr. Res. 79, 3–24 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 64.

    Beukes, N. J. & Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Soc. Econ. Geol. Rev. 15, 5–47 (2008).


    Google Scholar
     

  • 65.

    Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 66.

    Izon, G. et al. Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc. Natl Acad. Sci. USA 114, 2571–2579 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 67.

    Mishima, K. et al. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: late Archean record of changing atmospheric chemistry. Earth Planet. Sci. Lett. 464, 69–83 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 68.

    Raiswell, R. et al. Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsrück Slate; sites of soft tissue pyritization. Am. J. Sci. 308, 105–129 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 69.

    Papineau, D., Mojzsis, S. J. & Schmitt, A. K. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188–212 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 70.

    Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Ariel Shapiro
    Ariel Shapiro
    Uncovering the latest of tech and business.

    Latest news

    A Gene Editing Therapy Cut Cholesterol Levels by Half

    In a step toward the wider use of gene editing, a treatment that uses Crispr successfully slashed high...

    How startups can lure good talent fairly without big tech bank accounts 

    Startups have never been able to offer the same sizable salaries as big tech companies. Now with companies...

    Trump’s Hatred of EVs Is Making Gas Cars More Expensive

    This story originally appeared on Mother Jones and is part of the Climate Desk collaboration.As President Donald Trump...

    Gear News of the Week: Fairphone Lands in the US, and WhatsApp Is Finally on the Apple Watch

    The only smartphone manufacturer with a 10/10 iFixit repairability score is finally bringing its products to the US,...

    Do Not Jump Into an Ice Bath Before Your 12-Mile Run, and Other Cold Plunge Tips

    You’d think cold plunging would be a straightforward task. Strip down to your swim suit, take a controlled...

    Unpicking How to Measure the Complexity of Knots

    The duo kept their program running in the background for over a decade. During that time, a couple...

    Must read

    You might also likeRELATED
    Recommended to you