A Milky Way-like barred spiral galaxy at a redshift of 3 – Nature

-


  • Erwin, P. The dependence of bar frequency on galaxy mass, colour, and gas content – and angular resolution – in the local universe. Mon. Not. R. Astron. Soc. 474, 5372–5392 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pérez-Villegas, A. et al. Globular clusters in the inner Galaxy classified from dynamical orbital criteria. Mon. Not. R. Astron. Soc. 491, 3251–3265 (2020).

    ADS 

    Google Scholar
     

  • Tacconi, L. J., Genzel, R. & Sternberg, A. The evolution of the star-forming interstellar medium across cosmic time. Annu. Rev. Astron. Astrophys. 58, 157–203 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Z.-B., Zhu, W., Wang, Y. & Feng, L.-L. Barred galaxies in the Illustris-1 and TNG100 simulations: a comparison study. Astrophys. J. 895, 92 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zana, T. et al. Morphological decomposition of TNG50 galaxies: methodology and catalogue. Mon. Not. R. Astron. Soc. 515, 1524–1543 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Reddish, J. et al. The NewHorizon simulation – to bar or not to bar. Mon. Not. R. Astron. Soc. 512, 160–185 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Papovich, C. et al. ZFOURGE/CANDELS: on the evolution of M* Galaxy progenitors from z = 3 to 0.5. Astrophys. J. 803, 26 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sotillo-Ramos, D. et al. The merger and assembly histories of Milky Way- and M31-like galaxies with TNG50: disc survival through mergers. Mon. Not. R. Astron. Soc. 516, 5404–5427 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xiang, M. & Rix, H.-W. A time-resolved picture of our Milky Way’s early formation history. Nature 603, 599–603 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzo, F. et al. A dynamically cold disk galaxy in the early Universe. Nature 584, 201–204 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lelli, F. et al. A massive stellar bulge in a regularly rotating galaxy 1.2 billion years after the Big Bang. Science 371, 713–716 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Finkelstein, S. L. et al. The Cosmic Evolution Early Release Science (CEERS) Survey. JWST Proposal ID 1345. Cycle 0 Early Release Science https://ui.adsabs.harvard.edu/abs/2017jwst.prop.1345F (2017).

  • Kartaltepe, J. S. et al. CEERS key paper. III. The diversity of galaxy structure and morphology at z = 3–9 with JWST. Astrophys. J. 946, L15 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Aguerri, J. A. L., Muñoz-Tuñón, C., Varela, A. M. & Prieto, M. Characterizing bar structures: application to NGC 1300, NGC 7479 and NGC 7723. Astron. Astrophys. 361, 841–849 (2000).

    ADS 

    Google Scholar
     

  • Athanassoula, E. & Misiriotis, A. Morphology, photometry and kinematics of N-body bars – I. Three models with different halo central concentrations. Mon. Not. R. Astron. Soc. 330, 35–52 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Rosas-Guevara, Y. et al. The evolution of the barred galaxy population in the TNG50 simulation. Mon. Not. R. Astron. Soc. 512, 5339–5357 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pérez-González, P. G. et al. CEERS key paper. IV. A triality in the nature of HST-dark galaxies. Astrophys. J. 946, L16 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lucchini, S., D’Onghia, E. & Aguerri, J. A. L. Constraining the Milky Way bar length using Hercules and Gaia DR3. Preprint at https://arxiv.org/abs/2305.04981 (2023).

  • Guo, Y. et al. First look at z > 1 bars in the rest-frame near-infrared with JWST early CEERS imaging. Astrophys. J. 945, L10 (2023).

    Article 
    ADS 

    Google Scholar
     

  • White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Not. R. Astron. Soc. 368, 2–20 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hopkins, P. F., Cox, T. J., Younger, J. D. & Hernquist, L. How do disks survive mergers? Astrophys. J. 691, 1168–1201 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hayward, C. C. & Hopkins, P. F. How stellar feedback simultaneously regulates star formation and drives outflows. Mon. Not. R. Astron. Soc. 465, 1682–1698 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kraljic, K., Bournaud, F. & Martig, M. The two-phase formation history of spiral galaxies traced by the cosmic evolution of the bar fraction. Astrophys. J. 757, 60 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Weiner, B. J. et al. A survey of galaxy kinematics to z ~ 1 in the TKRS/GOODS-N Field. I. Rotation and dispersion properties. Astrophys. J. 653, 1027–1048 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Genzel, R. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Übler, H. et al. The evolution and origin of ionized gas velocity dispersion from z ~ 2.6 to z ~ 0.6 with KMOS3D. Astrophys. J. 880, 48 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Athanassoula, E., Machado, R. E. G. & Rodionov, S. A. Bar formation and evolution in disc galaxies with gas and a triaxial halo: morphology, bar strength and halo properties. Mon. Not. R. Astron. Soc. 429, 1949–1969 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Bland-Hawthorn, J., Tepper-Garcia, T., Agertz, O. & Freeman, K. The rapid onset of stellar bars in the baryon-dominated centers of disk galaxies. Astrophys. J. 947, 80 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Flynn, C., Holmberg, J., Portinari, L., Fuchs, B. & Jahreiß, H. On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy. Mon. Not. R. Astron. Soc. 372, 1149–1160 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Licquia, T. C. & Newman, J. A. Improved estimates of the Milky Way’s stellar mass and star formation rate from hierarchical Bayesian meta-analysis. Astrophys. J. 806, 96 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stefanon, M. et al. CANDELS Multi-wavelength catalogs: source identification and photometry in the CANDELS Extended Groth Strip. Astrophys. J. Suppl. Ser. 229, 32 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, 6 (2020).

    Article 

    Google Scholar
     

  • Bagley, M. B. et al. CEERS Epoch 1 NIRCam imaging: reduction methods and simulations enabling early JWST science results. Astrophys. J. 946, L12 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Finkelstein, S. L. et al. CEERS key paper. I. An early look into the first 500 Myr of galaxy formation with JWST. Astrophys. J. 946, L13 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Boucaud, A. et al. Convolution kernels for multi-wavelength imaging. Astron. Astrophys. 596, A63 (2016).

    Article 

    Google Scholar
     

  • Craig, M. et al. astropy/ccdproc: 2.4.1 (2.4.1). Zenodo https://doi.org/10.5281/zenodo.7986923 (2023)

  • Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey – the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Jedrzejewski, R. I. CCD surface photometry of elliptical galaxies – I. Observations, reduction and results. Mon. Not. R. Astron. Soc. 226, 747–768 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Bradley, L. et al. astropy/photutils: 1.0.0 (1.0.0). Zenodo https://doi.org/10.5281/zenodo.4044744 (2020)

  • Jogee, S. et al. Bar evolution over the last 8 billion years: a constant fraction of strong bars in the GEMS survey. Astrophys. J. 615, 105–108 (2004).

    Article 

    Google Scholar
     

  • Marinova, I. & Jogee, S. Characterizing bars at z ~ 0 in the optical and NIR: implications for the evolution of barred disks with redshift. Astrophys. J. 659, 1176–1197 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wozniak, H., Friedli, D., Martinet, L., Martin, P. & Bratschi, P. Disc galaxies with multiple triaxial structures. I. BVRI and Hα surface photometry. Astron. Astrophys. Suppl. 111, 115–152 (1995).

    ADS 

    Google Scholar
     

  • Muñoz-Mateos, J. C. et al. The impact of bars on disk breaks as probed by S4G imaging. Astrophys. J. 771, 59 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Buttitta, C. et al. A slow bar in the lenticular barred galaxy NGC 4277. Astron. Astrophys. 664, L10 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Aguerri, J. A. L. et al. Bar pattern speeds in CALIFA galaxies. I. Fast bars across the Hubble sequence. Astron. Astrophys. 576, A102 (2015).

    Article 

    Google Scholar
     

  • Rodriguez-Gomez, V. et al. The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Mon. Not. R. Astron. Soc. 483, 4140–4159 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Méndez-Abreu, J., Aguerri, J. A. L., Corsini, E. M. & Simonneau, E. Structural properties of disk galaxies. I. The intrinsic equatorial ellipticity of bulges. Astron. Astrophys. 478, 353–369 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Méndez-Abreu, J., Debattista, V. P., Corsini, E. M. & Aguerri, J. A. L. Secular and merger-built bulges in barred galaxies. Astron. Astrophys. 572, A25 (2014).

    Article 
    ADS 

    Google Scholar
     

  • van der Kruit, P. C. Optical surface photometry of eight spiral galaxies studied in Westerbork. Astron. Astrophys. Suppl. 38, 15–38 (1979).

    ADS 

    Google Scholar
     

  • Aguerri, J. A. L., Méndez-Abreu, J. & Corsini, E. M. The population of barred galaxies in the local universe. I. Detection and characterisation of bars. Astron. Astrophys. 495, 491–504 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Costantin, L. et al. No evidence for small disk-like bulges in a sample of late-type spirals. Astron. Astrophys. 601, A84 (2017).

    Article 

    Google Scholar
     

  • Eskridge, P. B. et al. The frequency of barred spiral galaxies in the near-infrared. Astron. J 119, 536–544 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Ohta, K., Hamabe, M. & Wakamatsu, K.-I. Surface photometry of barred spiral galaxies. Astrophys. J. 357, 71 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Pérez-González, P. G. et al. The stellar mass assembly of galaxies from z = 0 to z = 4: analysis of a sample selected in the rest-frame near-infrared with Spitzer. Astrophys. J. 675, 234–261 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Barro, G. et al. UV-to-FIR analysis of Spitzer/IRAC sources in the Extended Groth Strip. I. Multi-wavelength photometry and spectral energy distributions. Astrophys. J. Suppl. Ser. 193, 13 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Pérez-González, P. G. et al. Life beyond 30: probing the −20 < MUV < −17 luminosity function at 8 < z < 13 with the NIRCam parallel field of the MIRI Deep Survey. Astrophys. J. 951, 1 (2023).

    Article 

    Google Scholar
     

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barro, G. et al. Extremely red galaxies at z = 5–9 with MIRI and NIRSpec: dusty galaxies or obscured AGNs? Preprint at https://arxiv.org/abs/2305.14418 (2023).

  • Iyer, K. G. et al. Nonparametric star formation history reconstruction with Gaussian processes. I. Counting major episodes of star formation. Astrophys. J. 879, 116 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Kriek, M. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leja, J., Carnall, A. C., Johnson, B. D., Conroy, C. & Speagle, J. S. How to measure galaxy star formation histories. II. Nonparametric models. Astrophys. J. 876, 3 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bushouse, H. et al. JWST calibration pipeline (1.8.2). Zenodo https://doi.org/10.5281/zenodo.7325378 (2022).



  • Source link

    Latest news

    Road to Battlefield: Central Eurasia’s Gateway to Tech Zone Daily Startup Battlefield

    Historic regional competition launches to showcase Central Eurasia’s rising startup ecosystem on Silicon Valley’s biggest stage. For the first...

    A Pro-Russia Disinformation Campaign Is Using Free AI Tools to Fuel a ‘Content Explosion’

    A pro-Russia disinformation campaign is leveraging consumer artificial intelligence tools to fuel a “content explosion” focused on exacerbating...

    Kleida Martiro is leading the AI scale conversation at TC All Stage

    AI-native startups are rewriting the rules of what early traction looks like — and too often, investors are...

    Here’s What Mark Zuckerberg Is Offering Top AI Talent

    As Mark Zuckerberg staffs up Meta’s new superintelligence lab, he’s offered top tier research talent pay packages of...

    Sam Altman Slams Meta’s AI Talent Poaching Spree: ‘Missionaries Will Beat Mercenaries’

    OpenAI CEO Sam Altman is hitting back at Meta CEO Mark Zuckerberg’s recent AI talent poaching spree. In...

    AI Videos of Black Women Depicted as Primates Are Going Viral

    An AI-generated “bigfoot baddie,” with acrylic nails and a pink wig, speaks directly to her imaginary audience using...

    Must read

    You might also likeRELATED
    Recommended to you