Adaptive locomotion of active solids – Nature

-


  • Aguilar, J. et al. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79, 110001 (2016).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Aguilar, J. et al. Collective clog control: optimizing traffic flow in confined biological and robophysical excavation. Science 361, 672–677 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Savoie, W. et al. A robot made of robots: emergent transport and control of a smarticle ensemble. Sci. Robot. 4, eaax4316 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–40 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Aubret, A., Martinet, Q. & Palacci, J. Metamachines of pluripotent colloids. Nat. Commun. 12, 6398 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tan, T. H. et al. Odd dynamics of living chiral crystals. Nature 607, 287–293 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sanchez, T., Chen, D. T., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bricard, A., Caussin, J. B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bililign, E. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ball, P. Animate materials. MRS Bull. 46, 553–559 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Peyret, G. et al. Sustained oscillations of epithelial cell sheets. Biophys. J. 117, 464–478 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gilpin, W., Bull, M. & Prakash, M. The multiscale physics of cilia and flagella. Nat. Rev. Phys. 2, 74–88 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Lavi, I., Piel, M., Lennon-Duménil, A.-M., Voituriez, R. & Gov, N. Deterministic patterns in cell motility. Nat. Phys. 12, 1146–1152 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shankar, S. & Mahadevan, L. Active hydraulics and odd elasticity of muscle fibres. Nat. Phys. 20, 1501–1508 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Giomi, L. & DeSimone, A. Spontaneous division and motility in active nematic droplets. Phys. Rev. Lett. 112, 147802 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Miskin, M. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mathew, J. P., Pino, J. D. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Liu, T., Ou, J.-Y., MacDonald, K. & Zheludev, N. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 19, 986–991 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Nirody, J., Duran, L., Johnston, D. & Cohen, D. Tardigrades exhibit robust interlimb coordination across walking speeds and terrains. Proc. Natl Acad. Sci. USA 118, e2107289118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramar, M. & Alim, K. Encoding memory in tube diameter hierarchy of living flow network. Proc. Natl Acad. Sci. USA 118, e2007815118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Full, R., Earls, K., Wong, M. & Caldwell, R. Locomotion like a wheel? Nature 365, 495–495 (1993).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Biewener, A. & Patek, S. Animal Locomotion (Oxford Univ. Press, 2018).

  • Ijspeert, A., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thandiackal, R. et al. Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing. Sci. Robot. 6, eabf6354 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, S. et al. Learning quadrupedal locomotion on deformable terrain. Sci. Robot. 8, eade2256 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • He, Q. et al. A modular strategy for distributed, embodied control of electronics-free soft robots. Sci. Adv. 9, eade9247 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saintyves, B., Spenko, M. & Jaeger, H. A self-organizing robotic aggregate using solid and liquid-like collective states. Sci. Robot. 9, eadh4130 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • IEEE Spectrum. A compilation of robots falling down at the DARPA Robotics Challenge. YouTube https://www.youtube.com/watch?v=g0TaYhjpOfo (2015).

  • Burden, S., Libby, T., Jayaram, K., Sponberg, S. & Donelan, J. Why animals can outrun robots. Sci. Robot. 9, eadi9754 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Verhey, K. & Hammond, J. Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 10, 765–777 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zehr, E. P. & Stein, R. B. What functions do reflexes serve during human locomotion?. Prog. Neurobiol. 58, 185–205 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fruchart, M., Scheibner, C. & Vitelli, V. Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471–510 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bililign, E. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2021).

    Article 

    Google Scholar
     

  • Poncet, A. & Bartolo, D. When soft crystals defy Newton’s third law: nonreciprocal mechanics and dislocation motility. Phys. Rev. Lett. 128, 048002 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Braun, O. & Kivshar, Y. Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Ijspeert, A. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ryu, H. & Kuo, A. An optimality principle for locomotor central pattern generators. Sci. Rep. 11, 13140 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363–369 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal, R. et al. Learning dynamical behaviors in physical systems. Preprint at https://arxiv.org/abs/2406.07856 (2024).

  • Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Coulais, C., Fleury, R. & van Wezel, J. Topology and broken hermiticity. Nat. Phys. 17, 9–13 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Bergholtz, E., Budich, J. & Kunst, F. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Scheibner, C., Irvine, W. T. M. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, D. & Zhang, J. Non-Hermitian topological metamaterials with odd elasticity. Phys. Rev. Res. 2, 023173 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Landau, L. et al. Theory of Elasticity. Course of Theoretical Physics (Elsevier Science, 1986).

  • Duan, Q. et al. PyPop7: a pure-Python library for population-based black-box optimization. J. Mach. Learn. Res. 25, 1–28 (2024).

    MATH 

    Google Scholar
     

  • Loshchilov, I., Glasmachers, T. & Beyer, H.-G. Large scale black-box optimization by limited-memory matrix adaptation. IEEE Trans. Evol. Comput. 23, 353–358 (2019).

    Article 

    Google Scholar
     

  • Veenstra, J. et al. Adaptive locomotion of active solids. Zenodo https://doi.org/10.5281/zenodo.13832206 (2025).

  • Coulais, C., Sounas, D. & Alù, A. Static non-reciprocity in mechanical metamaterials. Nature 542, 461–464 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaat, M. & Park, H. Chiral nonreciprocal elasticity and mechanical activity. J. Mech. Phys. Solids 171, 105163 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     



  • Source link

    Latest news

    Save 10% on Shark’s Vacuums With Our Coupon Code

    Keeping my house clean can feel like an impossible task with a litter-kicking-happy cat and a two-year-old on...

    These Are the 10 DOGE Operatives Inside the Social Security Administration

    The SSA did not respond to a request from WIRED about what the DOGE operatives are working on...

    Sesame, the startup behind the viral virtual assistant Maya, releases its base AI model

    AI company Sesame has released the base model that powers Maya, the impressively realistic voice assistant. The model, which is 1 billion...

    Y Combinator’s police surveillance darling Flock Safety raises $275M at $7.5B valuation

    Flock Safety and one of its long-time VCs, Bedrock Capital, announced Thursday that the startup raised a fresh...

    Inside Elon Musk’s ‘Digital Coup’

    Musk and Trump’s relationship was cemented on July 13, 2024, when a would-be assassin came within inches of...

    Must read

    You might also likeRELATED
    Recommended to you