An orexigenic subnetwork within the human hippocampus – Nature

    0
    An orexigenic subnetwork within the human hippocampus – Nature


  • Azevedo, E. P. et al. A role of Drd2 hippocampal neurons in context-dependent food intake. Neuron 102, 873–886 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzog, L. E. et al. Interaction of taste and place coding in the hippocampus. J. Neurosci. 39, 3057–3069 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidson, T. L. & Jarrard, L. E. A role for hippocampus in the utilization of hunger signals. Behav. Neural Biol. 59, 167–171 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davidson, T. L., Kanoski, S. E., Schier, L. A., Clegg, D. J. & Benoit, S. C. A potential role for the hippocampus in energy intake and body weight regulation. Curr. Opin. Pharmacol. 7, 613–616 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, E. E. et al. Hypothalamus–hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat. Commun. 10, 4923 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, T. M. et al. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. eLife 4, e11190 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sternson, S. M. & Eiselt, A.-K. Three pillars for the neural control of appetite. Annu. Rev. Physiol. 79, 401–423 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalley, J. W. & Robbins, T. W. Fractionating impulsivity: neuropsychiatric implications. Nat. Rev. Neurosci. 18, 158–171 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunkin, S. M. et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, D996–D1008 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig, D. S. et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 107, 379–386 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alon, T. & Friedman, J. M. Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J. Neurosci. 26, 389–397 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. The insulo-opercular cortex encodes food-specific content under controlled and naturalistic conditions. Nat. Commun. 12, 3609 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Yassa, M. A. & Stark, C. E. L. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakker, A., Kirwan, C. B., Miller, M. & Stark, C. E. L. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319, 1640–1642 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K., Hsieh, L.-T., Parvizi, J. & Ranganath, C. Neural repetition suppression effects in the human hippocampus. Neurobiol. Learn. Mem. 173, 107269 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, RC159 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leuze, C. et al. Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain. NeuroImage 228, 117692 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, K. J., Müller, K.-R. & Hermes, D. Basis profile curve identification to understand electrical stimulation effects in human brain networks. PLoS Comput. Biol. 17, e1008710 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, K. J. et al. Canonical response parameterization: quantifying the structure of responses to single-pulse intracranial electrical brain stimulation. PLoS Comput. Biol. 19, e1011105 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shivacharan, R. S. et al. Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating. Nat. Med. 28, 1791–1796 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbosa, D. A. N. et al. Aberrant impulse control circuitry in obesity. Mol. Psychiatry 27, 3374–3384 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanoski, S. E. & Grill, H. J. Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol. Psychiatry 81, 748–756 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Franken, I. H. A., Huijding, J., Nijs, I. M. T. & van Strien, J. W. Electrophysiology of appetitive taste and appetitive taste conditioning in humans. Biol. Psychol. 86, 273–278 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, A. M. et al. Sex/gender differences in neural correlates of food stimuli: a systematic review of functional neuroimaging studies. Obes. Rev. 18, 687–699 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conturo, T. E. et al. Tracking neuronal fiber pathways in the living human brain. Proc. Natl Acad. Sci. USA 96, 10422–10427 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grisot, G., Haber, S. N. & Yendiki, A. Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. NeuroImage 239, 118300 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Keller, C. J. et al. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. B 369, 20130528 (2014).

    Article 

    Google Scholar
     

  • Fanselow, M. S. & Dong, H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miocinovic, S. et al. Cortical potentials evoked by subthalamic stimulation demonstrate a short latency hyperdirect pathway in humans. J. Neurosci. 38, 9129–9141 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron 106, 579–588 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suarez, A. N., Liu, C. M., Cortella, A. M., Noble, E. E. & Kanoski, S. E. Ghrelin and orexin interact to increase meal size through a descending hippocampus to hindbrain signaling pathway. Biol. Psychiatry 87, 1001–1011 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stice, E., Burger, K. & Yokum, S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. NeuroImage 67, 322–330 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Guthoff, M. et al. Insulin modulates food-related activity in the central nervous system. J. Clin. Endocrinol. Metab. 95, 748–755 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buzsáki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Nyhus, E. & Curran, T. Functional role of gamma and theta oscillations in episodic memory. Neurosci. Biobehav. Rev. 34, 1023–1035 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, D. J., McNaughton, N., Flanagan, D. & Kirk, I. J. Frontal-midline theta from the perspective of hippocampal ‘theta’. Prog. Neurobiol. 86, 156–185 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Samerphob, N., Cheaha, D., Chatpun, S. & Kumarnsit, E. Hippocampal CA1 local field potential oscillations induced by olfactory cue of liked food. Neurobiol. Learn. Mem. 142, 173–181 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, K. E., Luo, S. & Mason, T. B. A systematic review of neural correlates of dysregulated eating associated with obesity risk in youth. Neurosci. Biobehav. Rev. 124, 245–266 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mestre, Z. L. et al. Hippocampal atrophy and altered brain responses to pleasant tastes among obese compared with healthy weight children. Int. J. Obes. 41, 1496–1502 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G.-J. et al. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc. Natl Acad. Sci. USA 106, 1249–1254 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, Z. & Jackson, T. Acute stressors reduce neural inhibition to food cues and increase eating among binge eating disorder symptomatic women. Front. Behav. Neurosci. 10, 188 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cyr, M. et al. Reward-based spatial learning in teens with bulimia nervosa. J. Am. Acad. Child Adolesc. Psychiatry 55, 962–971 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bond, D. J. et al. Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl. Psychiatry 7, e1071 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lock, J., Garrett, A., Beenhakker, J. & Reiss, A. L. Aberrant brain activation during a response inhibition task in adolescent eating disorder subtypes. Am. J. Psychiatry 168, 55–64 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Martín-Pérez, C., Contreras-Rodríguez, O., Vilar-López, R. & Verdejo-García, A. Hypothalamic networks in adolescents with excess weight: stress-related connectivity and associations with emotional eating. J. Am. Acad. Child Adolesc. Psychiatry 58, 211–220 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, S. & Parvizi, J. Cognitive refractory state caused by spontaneous epileptic high-frequency oscillations in the human brain. Sci. Transl. Med. 11, eaax7830 (2019).

  • Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. NeuroImage 62, 2222–2231 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage 80, 125–143 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112, 267–277 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage 171, 415–436 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154, 174–187 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34, 144–155 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tschentscher, N., Ruisinger, A., Blank, H., Díaz, B. & Kriegstein, Kvon Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia. J. Neurosci. 39, 1720–1732 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 2, 117–119 (1992).

    Article 

    Google Scholar
     

  • Stice, E., Spoor, S., Bohon, C. & Small, D. M. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322, 449–452 (2008).

  • Kakusa, B. et al. Anticipatory human subthalamic area beta-band power responses to dissociable tastes correlate with weight gain. Neurobiol. Dis. 154, 105348 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, M. X. Analyzing Neural Time Series Data: Theory and Practice (MIT Press, 2019).

  • Shine, J. M. et al. Distinct patterns of temporal and directional connectivity among intrinsic networks in the human brain. J. Neurosci. 37, 9667–9674 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prime, D., Woolfe, M., Rowlands, D., O’Keefe, S. & Dionisio, S. Comparing connectivity metrics in cortico-cortical evoked potentials using synthetic cortical response patterns. J. Neurosci. Methods 334, 108559 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013); https://doi.org/10.1176/appi.books.9780890425596.

  • Fairburn, C. G. & Cooper, Z. in Binge eating: Nature, Assessment, and Treatment (eds Fairburn, C. G. & Wilson, G. T.) 317–360 (Guilford Press, 1993).

  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J. & Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, A. T., Epstein, N., Brown, G. & Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893–897 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gratz, K. L. & Roemer, L. Multidimensional assessment of emotion regulation and dysregulation: development, factor structure, and initial validation of the difficulties in emotion regulation scale. J. Psychopathol. Behav. Assess. 26, 41–54 (2004).

    Article 

    Google Scholar
     

  • Yan, C.-G., Wang, X.-D., Zuo, X.-N. & Zang, Y.-F. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Johnston, R., Jones, K. & Manley, D. Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 52, 1957–1976 (2018).

    Article 
    PubMed 

    Google Scholar
     



  • Source link