Bilayer nanographene reveals halide permeation through a benzene hole – Nature

-


  • Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 7798, 229–232 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 6268, 68–70 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hauser, A. W. & Schwerdtfeger, P. Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 2, 209–213 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Owais, C., James, A., John, C., Dhali, R. & Swathi, R. S. Selective permeation through one-atom-thick nanoporous carbon membranes: theory reveals excellent design strategies! J. Phys. Chem. B 20, 5127–5146 (2018).

    Article 

    Google Scholar
     

  • Krishnakumar, R. & Swathi, R. S. Tunable Azacrown-embedded graphene nanomeshes for ion sensing and separation. ACS Appl. Mater. Interfaces 1, 999–1010 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 6181, 289–292 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 12, 4019–4024 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sun, P. Z. et al. Exponentially selective molecular sieving through angstrom pores. Nat. Commun. 1, 7170 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ghosh, M., Jorissen, K. F. A., Wood, J. A. & Lammertink, R. G. H. Ion transport through perforated graphene. J. Phys. Chem. Lett. 21, 6339–6344 (2018).

    Article 

    Google Scholar
     

  • O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 3, 1234–1241 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 5, 459–464 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 7, 3602–3608 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fu, Y. et al. Dehydration-determined ion selectivity of graphene subnanopores. ACS Appl. Mater. Interfaces 21, 24281–24288 (2020).

    Article 

    Google Scholar
     

  • Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 1, 11408 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sint, K., Wang, B. & Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 49, 16448–16449 (2008).

    Article 

    Google Scholar
     

  • Qi, H. et al. Synergic effects of the nanopore size and surface charge on the ion selectivity of graphene membranes. J. Phys. Chem. C 1, 507–514 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Y., Qiu, Z. & Müllen, K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J. Am. Chem. Soc. 144, 11499–11524 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beser, U. et al. A C216-nanographene molecule with defined cavity as extended coronoid. J. Am. Chem. Soc. 138, 4322–4325 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 6919–6921 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Zhao, X.-J. et al. Molecular defect-containing bilayer graphene exhibiting brightened luminescence. Sci. Adv. 6, eaay8541 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarker, M. et al. Porous nanographenes, graphene nanoribbons, and nanoporous graphene selectively synthesized from the same molecular precursor. J. Am. Chem. Soc. 146, 14453–14467 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jentzsch, A. V., Hennig, A., Mareda, J. & Matile, S. Synthetic ion transporters that work with anion−π interactions, halogen bonds, and anion–macrodipole interactions. Acc. Chem. Res. 46, 2791–2800 (2013).

    Article 

    Google Scholar
     

  • Frontera, A. Encapsulation of anions: macrocyclic receptors based on metal coordination and anion–π interactions. Coord. Chem. Rev. 257, 1716–1727 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Liu, Q. et al. Rechargeable anion-shuttle batteries for low-cost energy storage. Chem 7, 1993–2021 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Niyas, M. A., Shoyama, K. & Würthner, F. C64 nanographene tetraimide—a receptor for phthalocyanines with subnanomolar affinity. Angew. Chem. Int. Ed. 25, e202302032 (2023).


    Google Scholar
     

  • Mahl, M., Niyas, M. A., Shoyama, K. & Würthner, F. Multilayer stacks of polycyclic aromatic hydrocarbons. Nat. Chem. 14, 457–462 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Zhao, W., Chen, C.-H. & Flood, A. H. Chloride capture using a C-H hydrogen-bonding cage. Science 6449, 159–161 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Shoyama, K. & Würthner, F. Synthesis of a carbon nanocone by cascade annulation. J. Am. Chem. Soc. 33, 13008–13012 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Smithrud, D. B. & Diederich, F. Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding. J. Am. Chem. Soc. 112, 339–343 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 33, 23067–23079 (2016).

    Article 

    Google Scholar
     

  • Li, Y. & Flood, A. H. Pure C–H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 14, 2649–2652 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 8, 704–710 (2013).

    Article 

    Google Scholar
     

  • Wu, X. et al. Tetraurea macrocycles: aggregation-driven binding of chloride in aqueous solutions. Chem 5, 1210–1222 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 6, 935–967 (1990).

    Article 
    MATH 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 3, 1652–1671 (2019).

    Article 

    Google Scholar
     

  • Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 1, 3–8 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 1, 112–122 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. J. Appl. Crystallogr. 47, 806–809 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 1, 7–13 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wagner, R. & Berger, S. Gradient-selected NOESY—a fourfold reduction of the measurement time for the NOESY experiment. J. Magn. Reson., Ser. A 123, 119–121 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Pavlović, R. Z. et al. From selection to instruction and back: competing conformational selection and induced fit pathways in abiotic hosts. Angew. Chem. Int. Ed. 36, 19942–19948 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Zolnai, Z., Juranić, N., Vikić-Topić, D. & Macura, S. Quantitative determination of magnetization exchange rate constants from a series of two-dimensional exchange NMR spectra. J. Chem. Inf. Comput. Sci. 3, 611–621 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Lu, J., Ma, D., Hu, J., Tang, W. & Zhu, D. Nuclear magnetic resonance spectroscopic studies of pyridine methyl derivatives binding to cytochrome c. J. Chem. Soc., Dalton Trans. 13, 2267–2274 (1998).

    Article 

    Google Scholar
     

  • Miklitz, M. & Jelfs, K. E. pywindow: automated structural analysis of molecular pores. J. Chem. Inf. Model. 12, 2387–2391 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Maglic, J. B. & Lavendomme, R. MoloVol: an easy-to-use program for analyzing cavities, volumes and surface areas of chemical structures. J. Appl. Crystallogr. 55, 1033–1044 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    These Are the 10 DOGE Operatives Inside the Social Security Administration

    The SSA did not respond to a request from WIRED about what the DOGE operatives are working on...

    Sesame, the startup behind the viral virtual assistant Maya, releases its base AI model

    AI company Sesame has released the base model that powers Maya, the impressively realistic voice assistant. The model, which is 1 billion...

    Y Combinator’s police surveillance darling Flock Safety raises $275M at $7.5B valuation

    Flock Safety and one of its long-time VCs, Bedrock Capital, announced Thursday that the startup raised a fresh...

    Inside Elon Musk’s ‘Digital Coup’

    Musk and Trump’s relationship was cemented on July 13, 2024, when a would-be assassin came within inches of...

    What’s Lost When the Human Drivers Are Gone?

    This week on Uncanny Valley, we look ahead into a future where driverless cars are mainstream. Source link

    Must read

    You might also likeRELATED
    Recommended to you