Blastocyst-like structures generated from human pluripotent stem cells

0


  • 1.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 558, 132–135 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Simunovic, M. et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8, 208 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

  • 15.

    Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Kime, C. et al. Induced 2C expression and implantation-competent blastocyst-like cysts from primed pluripotent stem cells. Stem Cell Rep. 13, 485–498 (2019).

    CAS 

    Google Scholar
     

  • 17.

    Sozen, B. et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev. Cell 51, 698–712 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Li, R. et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell 179, 687–702 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 9, e52504 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Linneberg-Agerholm, M. et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 146, dev180620 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Guo, G. et al. Trophectoderm potency is retained exclusively in human naïve cells. Preprint at https://doi.org/10.1101/2020.02.04.933812 (2020).

  • 22.

    Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Wu, J. et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS 

    Google Scholar
     

  • 29.

    Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Cinkornpumin, J. K. et al. Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and methylome. Stem Cell Rep. 15, 198–213 (2020).

    CAS 

    Google Scholar
     

  • 35.

    Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Niu, Y. et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366, eaaw5754 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protocols 9, 2732–2739 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Niimura, S. Time-lapse videomicrographic analyses of contractions in mouse blastocysts. J. Reprod. Dev. 49, 413–423 (2003).

    PubMed 

    Google Scholar
     

  • 43.

    Eckert, J. J. et al. PKC signalling regulates tight junction membrane assembly in the pre-implantation mouse embryo. Reproduction 127, 653–667 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Eckert, J. J. et al. Relative contribution of cell contact pattern, specific PKC isoforms and gap junctional communication in tight junction assembly in the mouse early embryo. Dev. Biol. 288, 234–247 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Yu, L. et al. A protocol for the generation of blastocyst-like structures from human pluripotent stem cells. Protocol Exchange https://doi.org/10.21203/rs.3.pex-1359/v1 (2021).

  • 46.

    Bredenkamp, N., Stirparo, G. G., Nichols, J., Smith, A. & Guo, G. The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Rep. 12, 1212–1222 (2019).

    CAS 

    Google Scholar
     

  • 47.

    Yu, L. et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell https://doi.org/10.1016/j.stem.2020.11.003 (2020).

  • 48.

    Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 54.

    Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  • 56.

    Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16, 243–245 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    PubMed 

    Google Scholar
     

  • 60.

    Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link