Blastocyst-like structures generated from human pluripotent stem cells

-


  • 1.

    Thomson, J. A. et al. Embryonic stem cell traces derived from human blastocysts. Science 282, 1145–1147 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell traces from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Takahashi, Okay. et al. Induction of pluripotent stem cells from grownup human fibroblasts by outlined elements. Cell 131, 861–872 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with outlined elements. Nature 451, 141–146 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wernig, M. et al. In vitro reprogramming of fibroblasts right into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Yu, J. et al. Induced pluripotent stem cell traces derived from human somatic cells. Science 318, 1917–1920 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Aasen, T. et al. Efficient and fast technology of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by mixed Wnt and Nodal signalling. Nature 558, 132–135 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Simunovic, M. et al. A 3D mannequin of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A way to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Shao, Y. et al. A pluripotent stem cell-based mannequin for post-implantation human amniotic sac growth. Nat. Commun. 8, 208 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Zheng, Y. et al. Controlled modelling of human epiblast and amnion growth utilizing stem cells. Nature 573, 421–425 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Moris, N. et al. An in vitro mannequin of early anteroposterior group throughout human growth. Nature 582, 410–415 (2020).

  • 15.

    Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Kime, C. et al. Induced 2C expression and implantation-competent blastocyst-like cysts from primed pluripotent stem cells. Stem Cell Rep. 13, 485–498 (2019).

    CAS 

    Google Scholar
     

  • 17.

    Sozen, B. et al. Self-organization of mouse stem cells into an prolonged potential blastoid. Dev. Cell 51, 698–712 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Li, R. et al. Generation of blastocyst-like structures from mouse embryonic and grownup cell cultures. Cell 179, 687–702 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 9, e52504 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Linneberg-Agerholm, M. et al. Naïve human pluripotent stem cells reply to Wnt, Nodal and LIF signalling to provide expandable naïve extra-embryonic endoderm. Development 146, dev180620 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Guo, G. et al. Trophectoderm efficiency is retained completely in human naïve cells. Preprint at https://doi.org/10.1101/2020.02.04.933812 (2020).

  • 22.

    Theunissen, T. W. et al. Systematic identification of tradition circumstances for induction and upkeep of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Wu, J. et al. An various pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Deglincerti, A. et al. Self-organization of the in vitro hooked up human embryo. Nature 533, 251–254 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Moon, Okay. R. et al. Visualizing construction and transitions in high-dimensional organic knowledge. Nat. Biotechnol. 37, 1482–1492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Becht, E. et al. Dimensionality discount for visualizing single-cell knowledge utilizing UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS 

    Google Scholar
     

  • 29.

    Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Takashima, Y. et al. Resetting transcription issue management circuitry towards ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Xiang, L. et al. A developmental panorama of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Cinkornpumin, J. Okay. et al. Naive human embryonic stem cells may give rise to cells with a trophoblast-like transcriptome and methylome. Stem Cell Rep. 15, 198–213 (2020).

    CAS 

    Google Scholar
     

  • 35.

    Nakamura, T. et al. A developmental coordinate of pluripotency amongst mice, monkeys and people. Nature 537, 57–62 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Trapnell, C. et al. The dynamics and regulators of cell destiny choices are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Niu, Y. et al. Dissecting primate early post-implantation growth utilizing long-term in vitro embryo tradition. Science 366, eaaw5754 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro tradition of mouse blastocysts past the implantation levels. Nat. Protocols 9, 2732–2739 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Shahbazi, M. N. et al. Self-organization of the human embryo within the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells provoke morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Niimura, S. Time-lapse videomicrographic analyses of contractions in mouse blastocysts. J. Reprod. Dev. 49, 413–423 (2003).

    PubMed 

    Google Scholar
     

  • 43.

    Eckert, J. J. et al. PKC signalling regulates tight junction membrane meeting within the pre-implantation mouse embryo. Reproduction 127, 653–667 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Eckert, J. J. et al. Relative contribution of cell contact sample, particular PKC isoforms and hole junctional communication in tight junction meeting within the mouse early embryo. Dev. Biol. 288, 234–247 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Yu, L. et al. A protocol for the technology of blastocyst-like structures from human pluripotent stem cells. Protocol Exchange https://doi.org/10.21203/rs.3.pex-1359/v1 (2021).

  • 46.

    Bredenkamp, N., Stirparo, G. G., Nichols, J., Smith, A. & Guo, G. The cell-surface marker sushi containing area 2 facilitates institution of human naive pluripotent stem cells. Stem Cell Rep. 12, 1212–1222 (2019).

    CAS 

    Google Scholar
     

  • 47.

    Yu, L. et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell https://doi.org/10.1016/j.stem.2020.11.003 (2020).

  • 48.

    Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic knowledge. Cell Syst. 8, 281–291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in distinctive molecular identifiers to enhance quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly basic goal program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 54.

    Korsunsky, I. et al. Fast, delicate and correct integration of single-cell knowledge with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension discount. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  • 56.

    Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq knowledge. Nat. Methods 16, 243–245 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states via dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    PubMed 

    Google Scholar
     

  • 60.

    Qiu, X. et al. Reversed graph embedding resolves advanced single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Ariel Shapiro
    Ariel Shapiro
    Uncovering the latest of tech and business.

    Latest news

    Cloudflare Is Blocking AI Crawlers by Default

    Last year, internet infrastructure firm Cloudflare launched tools enabling its customers to block AI scrapers. Today the company...

    Senator Blackburn Pulls Support for AI Moratorium in Trump’s ‘Big Beautiful Bill’ Amid Backlash

    As Congress races to pass President Donald Trump’s “Big Beautiful Bill,” it’s also sprinting to placate the many...

    Sri Mandir keeps investors hooked as digital devotion grows

    AppsForBharat, the Indian startup behind the Hindu devotional app Sri Mandir, has raised $20 million in a new...

    Legal software company Clio drops $1B on law data giant vLex

    On Monday, Clio, a 17-year-old Canadian law firm management software company, announced that it has agreed to acquire...

    How fast is your brain ageing? Ordinary scans reveal the pace

    Telltale features visible in standard brain images can reveal how quickly a person is ageing, a study...

    Human embryo research: how to move towards a 28-day limit

    In December, the UK national fertility regulator — the Human Fertilisation and Embryology Authority (HFEA) — recommended...

    Must read

    You might also likeRELATED
    Recommended to you