Thomson, J. A. et al. Embryonic stem cell traces derived from human blastocysts. Science 282, 1145–1147 (1998).
Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell traces from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).
Takahashi, Okay. et al. Induction of pluripotent stem cells from grownup human fibroblasts by outlined elements. Cell 131, 861–872 (2007).
Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with outlined elements. Nature 451, 141–146 (2008).
Wernig, M. et al. In vitro reprogramming of fibroblasts right into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).
Yu, J. et al. Induced pluripotent stem cell traces derived from human somatic cells. Science 318, 1917–1920 (2007).
Aasen, T. et al. Efficient and fast technology of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).
Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by mixed Wnt and Nodal signalling. Nature 558, 132–135 (2018).
Simunovic, M. et al. A 3D mannequin of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).
Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A way to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).
Shao, Y. et al. A pluripotent stem cell-based mannequin for post-implantation human amniotic sac growth. Nat. Commun. 8, 208 (2017).
Zheng, Y. et al. Controlled modelling of human epiblast and amnion growth utilizing stem cells. Nature 573, 421–425 (2019).
Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).
Moris, N. et al. An in vitro mannequin of early anteroposterior group throughout human growth. Nature 582, 410–415 (2020).
Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).
Kime, C. et al. Induced 2C expression and implantation-competent blastocyst-like cysts from primed pluripotent stem cells. Stem Cell Rep. 13, 485–498 (2019).
Sozen, B. et al. Self-organization of mouse stem cells into an prolonged potential blastoid. Dev. Cell 51, 698–712 (2019).
Li, R. et al. Generation of blastocyst-like structures from mouse embryonic and grownup cell cultures. Cell 179, 687–702 (2019).
Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 9, e52504 (2020).
Linneberg-Agerholm, M. et al. Naïve human pluripotent stem cells reply to Wnt, Nodal and LIF signalling to provide expandable naïve extra-embryonic endoderm. Development 146, dev180620 (2019).
Guo, G. et al. Trophectoderm efficiency is retained completely in human naïve cells. Preprint at https://doi.org/10.1101/2020.02.04.933812 (2020).
Theunissen, T. W. et al. Systematic identification of tradition circumstances for induction and upkeep of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).
Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 (2018).
Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).
Wu, J. et al. An various pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015).
Deglincerti, A. et al. Self-organization of the in vitro hooked up human embryo. Nature 533, 251–254 (2016).
Moon, Okay. R. et al. Visualizing construction and transitions in high-dimensional organic knowledge. Nat. Biotechnol. 37, 1482–1492 (2019).
Becht, E. et al. Dimensionality discount for visualizing single-cell knowledge utilizing UMAP. Nat. Biotechnol. 37, 38–44 (2019).
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).
Takashima, Y. et al. Resetting transcription issue management circuitry towards ground-state pluripotency in human. Cell 158, 1254–1269 (2014).
Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).
Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).
Xiang, L. et al. A developmental panorama of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).
Cinkornpumin, J. Okay. et al. Naive human embryonic stem cells may give rise to cells with a trophoblast-like transcriptome and methylome. Stem Cell Rep. 15, 198–213 (2020).
Nakamura, T. et al. A developmental coordinate of pluripotency amongst mice, monkeys and people. Nature 537, 57–62 (2016).
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165 (2015).
Trapnell, C. et al. The dynamics and regulators of cell destiny choices are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
Niu, Y. et al. Dissecting primate early post-implantation growth utilizing long-term in vitro embryo tradition. Science 366, eaaw5754 (2019).
Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro tradition of mouse blastocysts past the implantation levels. Nat. Protocols 9, 2732–2739 (2014).
Shahbazi, M. N. et al. Self-organization of the human embryo within the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).
Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells provoke morphogenesis upon implantation. Cell 156, 1032–1044 (2014).
Niimura, S. Time-lapse videomicrographic analyses of contractions in mouse blastocysts. J. Reprod. Dev. 49, 413–423 (2003).
Eckert, J. J. et al. PKC signalling regulates tight junction membrane meeting within the pre-implantation mouse embryo. Reproduction 127, 653–667 (2004).
Eckert, J. J. et al. Relative contribution of cell contact sample, particular PKC isoforms and hole junctional communication in tight junction meeting within the mouse early embryo. Dev. Biol. 288, 234–247 (2005).
Yu, L. et al. A protocol for the technology of blastocyst-like structures from human pluripotent stem cells. Protocol Exchange https://doi.org/10.21203/rs.3.pex-1359/v1 (2021).
Bredenkamp, N., Stirparo, G. G., Nichols, J., Smith, A. & Guo, G. The cell-surface marker sushi containing area 2 facilitates institution of human naive pluripotent stem cells. Stem Cell Rep. 12, 1212–1222 (2019).
Yu, L. et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell https://doi.org/10.1016/j.stem.2020.11.003 (2020).
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic knowledge. Cell Syst. 8, 281–291 (2019).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in distinctive molecular identifiers to enhance quantification accuracy. Genome Res. 27, 491–499 (2017).
Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly basic goal program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).
Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Korsunsky, I. et al. Fast, delicate and correct integration of single-cell knowledge with Harmony. Nat. Methods 16, 1289–1296 (2019).
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension discount. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq knowledge. Nat. Methods 16, 243–245 (2019).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states via dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
Qiu, X. et al. Reversed graph embedding resolves advanced single-cell trajectories. Nat. Methods 14, 979–982 (2017).