Dirac mass induced by optical gain and loss – Nature

    0
    Dirac mass induced by optical gain and loss – Nature


  • Wilczek, F. Origins of mass. Cent. Eur. J. Phys. 10, 1021–1037 (2012).

    CAS 

    Google Scholar
     

  • Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clay Mathematics Institute. Yang-Mills and the mass gap. Clay Mathematics Institute https://www.claymath.org/millennium/yang-mills-the-maths-gap/ (2023).

  • Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having \({\mathcal{P}}{\mathcal{T}}\) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. \({\mathcal{P}}{\mathcal{T}}\)-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, H., Wang, Q., Zhang, B. & Chong, Y. D. Non-Hermitian Dirac cones. Phys. Rev. Lett. 124, 236403 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Terh, Y. Y., Banerjee, R., Xue, H. & Chong, Y. D. Scattering dynamics and boundary states of a non-Hermitian Dirac equation. Phys. Rev. B 108, 045419 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holstein, B. R. Klein’s paradox. Am. J. Phys. 66, 507–512 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dombey, N. & Calogeracos, A. Seventy years of the Klein paradox. Phys. Rep. 315, 41–58 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Direct observation of Klein tunneling in phononic crystals. Science 370, 1447–1450 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun. 11, 2180 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lustig, E. et al. in Proc. 2021 Conference on Lasers and Electro-Optics (eds Kang, J. et al.) FF2H.1 (Optica Publishing Group, 2021).

  • Moussa, H. et al. Observation of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 19, 863–868 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Z. et al. Quantum time reflection and refraction of ultracold atoms. Nat. Photon. 18, 68–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Leykam, D., Rechtsman, M. & Chong, Y. Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators. Phys. Rev. Lett. 117, 013902 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Özdemir, Ş. K. Fermi arcs connect topological degeneracies. Science 359, 995–996 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wimmer, M. et al. Optical diametric drive acceleration through action–reaction symmetry breaking. Nat. Phys. 9, 780–784 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Miri, M.-A., Regensburger, A., Peschel, U. & Christodoulides, D. N. Optical mesh lattices with \({\mathcal{P}}{\mathcal{T}}\) symmetry. Phys. Rev. A 86, 023807 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ye, H. et al. Reconfigurable refraction manipulation at synthetic temporal interfaces with scalar and vector gauge potentials. Proc. Natl Acad. Sci. USA 120, e2300860120 (2023).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photon. 12, 765–773 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Weidemann, S., Kremer, M., Longhi, S. & Szameit, A. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature 601, 354–359 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackiw, R. & Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 13, 3398–3409 (1976).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Angelakis, D. G., Das, P. & Noh, C. Probing the topological properties of the Jackiw-Rebbi model with light. Sci. Rep. 4, 6110 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takata, K. & Notomi, M. Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121, 213902 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link