Direct identification of Ac and No molecules with an atom-at-a-time technique – Nature

-


  • Smits, O. R., Düllmann, C. E., Indelicato, P., Nazarewicz, W. & Schwerdtfeger, P. The quest for superheavy elements and the limit of the periodic table. Nat. Rev. Phys. 2, 515–531 (2020).


    Google Scholar
     

  • The Chemistry of the Actinide and Transactinide Elements Vol. 1–5 (Springer, 2006).

  • Gates, J. M. & Pore, J. L. Studies of heavy and super heavy elements with FIONA: the broad impact of mass-number identifications. Eur. Phys. J. A 58, 196 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Miederer, M., Scheinberg, D. A. & McDevitt, M. R. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 60, 1371–1382 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deblonde, G. J.-P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: a 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).

    CAS 

    Google Scholar
     

  • Wacker, J. N. et al. Actinium chelation and crystallization in a macromolecular scaffold. Nat. Commun. 15, 5741 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, R. J. in The Chemistry of the Actinide and Transactinide Elements (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) 1621–1651 (Springer, 2006).

  • Sato, T. K. et al. First ionization potentials of Fm, Md, No, and Lr: verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 140, 14609–14613 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Laatiaoui, M. et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Schädel, M. Chemistry of the superheavy elements. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140191 (2015).

    ADS 

    Google Scholar
     

  • Gregorich, K. E. Simulation of recoil trajectories in gas-filled magnetic separators. Nucl. Instrum. Methods Phys. Res. A 711, 47–59 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Savard, G. Large radio-frequency gas catchers and the production of radioactive nuclear beams. J. Phys. Conf. Ser. 312, 052004 (2011).


    Google Scholar
     

  • Cooper, K. et al. Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 763, 543–546 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Sumithrarachchi, C. S. et al. Beam thermalization in a large gas catcher. Nucl. Instrum. Methods Phys. Res. B 463, 305–309 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Anderson, J. B., Andres, R. P. & Fenn, J. B. in Advances in Chemical Physics: Molecular Beams Vol. 10 (ed. Ross, J.) 275–317 (Interscience, 1966).

  • Hillenkamp, M., Keinan, S. & Even, U. Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118, 8699–8705 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Northby, J. A. Experimental studies of helium droplets. J. Chem. Phys. 115, 10065–10077 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Searcy, J. Q. & Fenn, J. B. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61, 5282–5288 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Herfurth, F. et al. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods Phys. Res. A 469, 254–275 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Lunney, M. D. & Moore, R. B. Cooling of mass-separated beams using a radiofrequency quadrupole ion guide. Int. J. Mass Spectrom. 190–191, 153–160 (1999).


    Google Scholar
     

  • Mansell, S. M., Farnaby, J. H., Germeroth, A. I. & Arnold, P. L. Thermally stable uranium dinitrogen complex with siloxide supporting ligands. Organometallics 32, 4212–4218 (2013).


    Google Scholar
     

  • Schädel, M. et al. Chemical properties of element 106 (seaborgium). Nature 388, 55–57 (1997).

    ADS 

    Google Scholar
     

  • Eichler, R. et al. Chemical characterization of bohrium (element 107). Nature 407, 63–65 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Düllmann, Ch. E. et al. Chemical investigation of hassium (element 108). Nature 418, 859–862 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • Eichler, R. et al. Chemical characterization of element 112. Nature 447, 72–75 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Even, J. et al. Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491–1493 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichler, R. et al. Indication for a volatile element 114. Radiochim. Acta 98, 133–139 (2010).

    CAS 

    Google Scholar
     

  • Yakushev, A. et al. Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624–1629 (2014).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yakushev, A. et al. On the adsorption and reactivity of element 114, flerovium. Front. Chem. 10, 976635 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yakushev, A. et al. Manifestation of relativistic effects in the chemical properties of nihonium and moscovium revealed by gas chromatography studies. Front. Chem. 12, 1474820 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutkowski, P. X. et al. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory. Theor. Chem. Acc. 129, 575–592 (2011).

    CAS 

    Google Scholar
     

  • Cheng, P., Koyanagi, G. K. & Bohme, D. K. Gas-phase reactions of atomic lanthanide cations with D2O: room-temperature kinetics and periodicity in reactivity. ChemPhysChem 7, 1813–1819 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, P., Koyanagi, G. K. & Bohme, D. K. Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 111, 8561–8573 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Gates, J. M. et al. First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leitner, D. et al. Next generation ECR ion sources: first results of the superconducting 28 GHz ECRIS—VENUS. Nucl. Instrum. Methods Phys. Res. B 235, 486 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

  • Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203–209 (2004).

    CAS 

    Google Scholar
     

  • Cao, X., Dolg, M. & Stool, M. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–496 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Bartlett, R. J. & Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Jong, W. A., de Harrison, R. J. & Dixon, D. A. Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J. Chem. Phys. 114, 48–53 (2001).

    ADS 

    Google Scholar
     

  • Feng, R. & Peterson, K. A. Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. J. Chem. Phys. 147, 084108 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Wolf, A., Reiher, M. & Hess, B. A. The generalized Douglas–Kroll transformation. J. Chem. Phys. 117, 9215–9226 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Knowles, P. J., Hampel, C. & Werner, H.-J. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys. 99, 5219–5228 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    CAS 

    Google Scholar
     

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Glendening, E. D. et al. NBO 7.0. Theoretical Chemistry Institute, Univ. Wisconsin (2018).

  • Frisch, M. J. et al. Gaussian 16, revision A.03. Gaussian, Inc. (2016).

  • Werner, H.-J. et al. The Molpro quantum chemistry package. J. Chem. Phys. 152, 144107 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Werner, H.-J. et al. MOLPRO, version 2021, a package of ab initio programs. https://www.molpro.net (2021).

  • Pore, J. Nobelium and actinium coordination chemistry study with FIONA. Zenodo https://zenodo.org/records/14277708 (2024).



  • Source link

    Latest news

    Jeh Aerospace nets $11M to scale the commercial aircraft supply chain in India

    Indian startup Jeh Aerospace founders Vishal Sanghavi and Venkatesh Mudragalla have had a front row seat to the...

    A top designer was banned from Dribbble. Now he’s building his own competitor.

    Dribbble has permanently banned dozens of designers from its platform following a new effort to pivot to a...

    Science Reveals the Surprising Origins of the Potato

    There are more than a hundred ways to prepare a potato, and thousands of stories have begun with...

    (BPRW) Jessie Trice Community Health System Celebrates National Health Center Week 2025 | Tech Zone Daily

    (BPRW) Jessie Trice Community Health System Celebrates National Health Center Week 2025 ...

    OpenMind wants to be the Android operating system of humanoid robots

    Many companies are focused on building robots, or the hardware components to help them move, grip objects, or...

    Must read

    You might also likeRELATED
    Recommended to you