Discovery Learning predicts battery cycle life from minimal experiments – Nature

-


  • Figgener, J. et al. Multi-year field measurements of home storage systems and their use in capacity estimation. Nat. Energy 9, 1438–1447 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Degen, F., Winter, M., Bendig, D. & Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8, 1284–1295 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Severson, K. A. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Settles, B. Active Learning Literature Survey. University of Wisconsin–Madison https://minds.wisconsin.edu/handle/1793/60660 (2009).

  • Yu, R. & Wang, R. Learning dynamical systems from data: an introduction to physics-guided deep learning. Proc. Natl Acad. Sci. 121, e2311808121 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian, Y., Lampert, C. H., Schiele, B. & Akata, Z. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal. Mach. Intell. 41, 2251–2265 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, V. N. et al. A decade of insights: delving into calendar aging trends and implications. Joule 9, 101796 (2025).

    Article 

    Google Scholar
     

  • Zhu, Y., Gu, X., Liu, K., Zhao, W. & Shang, Y. Rapid test and assessment of lithium-ion battery cycle life based on transfer learning. IEEE Trans. Transp. Electrification 10, 9133–9143 (2024).

    Article 

    Google Scholar
     

  • Edge, J. S. et al. Lithium ion battery degradation: what you need to know. Phys. Chem. Chem. Phys. 23, 8200–8221 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Battery lifetime prediction across diverse ageing conditions with inter-cell deep learning. Nat. Mach. Intell. 7, 270–277 (2025).

    Article 

    Google Scholar
     

  • Guo, N. et al. Semi-supervised learning for explainable few-shot battery lifetime prediction. Joule 8, 1820–1836 (2024).

    Article 

    Google Scholar
     

  • Aykol, M., Herring, P. & Anapolsky, A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 5, 725–727 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ward, L. et al. Principles of the Battery Data Genome. Joule 6, 2253–2271 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruner, J. S. The act of discovery. Harvard Educ. Rev. 31, 21–32 (1961).


    Google Scholar
     

  • Preger, Y. et al. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J. Electrochem. Soc. 167, 120532 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lain, M. J., Brandon, J. & Kendrick, E. Design strategies for high power vs. high energy lithium ion cells. Batteries 5, 64 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Trad, K. Lifecycle ageing tests on commercial 18650 Li ion cell @ 25 °C and 45 °C. 4TU. ResearchData https://doi.org/10.4121/13739296.v1 (2021).

  • Heenan, T. M. M. et al. An advanced microstructural and electrochemical datasheet on 18650 Li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes. J. Electrochem. Soc. 167, 140530 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 13, 2261 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wildfeuer, L. et al. Experimental degradation study of a commercial lithium-ion battery. J. Power Sources 560, 232498 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bills, A. et al. A battery dataset for electric vertical takeoff and landing aircraft. Sci. Data 10, 344 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X.-G., Liu, T. & Wang, C.-Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6, 176–185 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, J.-H. et al. Kosmotropic aqueous processing solution for green lithium battery cathode manufacturing. Nat. Commun 16, 1686 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko, S. et al. Rapid safety screening realized by accelerating rate calorimetry with lab-scale small batteries. Nat. Energy 10, 707–714 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Che, Y., Teodorescu, R., Song, Z. & Hu, X. Energy storage management in electric vehicles. Nat. Rev. Clean Technol. 1, 161–175 (2025).

    Article 

    Google Scholar
     

  • Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop transfer enables artificial intelligence to yield chemical knowledge. Nature 633, 351–358 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. 117, 30055–30062 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brehmer, J. Simulation-based inference in particle physics. Nat. Rev. Phys. 3, 305–305 (2021).

    Article 

    Google Scholar
     

  • Durkan, C., Bekasov, A., Murray, I. & Papamakarios, G. Neural spline flows. In Proc. Advances in Neural Information Processing Systems 32 (Curran Associates, 2019).

  • Tejero-Cantero, A. et al. sbi: a toolkit for simulation-based inference. J. Open Source Softw. 5, 2505 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sulzer, V., Marquis, S. G., Timms, R., Robinson, M. & Chapman, S. J. Python battery mathematical modelling (PyBaMM). J. Open Res. Softw. 9, 14 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115–121 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenberg, D., Nonnenmacher, M. & Macke, J. Automatic posterior transformation for likelihood-free inference. In Proc. 36th International Conference on Machine Learning 2404–2414 (PMLR, 2019).

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B Stat. Methodol. 67, 301–320 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Awad, M. & Khanna, R. in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (eds Awad, M. & Khanna, R.) 67–80 (Apress, 2015).

  • Pedregosa, F. et al. scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Zhang, J. et al. Discovery Learning predicts battery cycle life from minimal experiments. Zenodo https://doi.org/10.5281/zenodo.17654407 (2025).



  • Source link

    Latest news

    Ring Kills Flock Safety Deal After Super Bowl Ad Uproar

    The widespread protests in Iran have exposed both Tehran’s brutal tactics in the streets, where state authorities have...

    These Are the Best Alternatives to Google’s Android Operating System

    Want Google out of your life? It's pretty easy to find alternative search, email, and photo storage providers,...

    I Tried H&R Block’s DIY Tax Service. Here’s Who’ll Benefit From It

    Throughout, there's a Virtual Assistant chatbot if you need to ask questions or get help, which gives me...

    Gear News of the Week: Samsung Sets a Date for Galaxy Unpacked, and Fitbit’s AI Coach Comes to iOS

    Samsung will unveil its next flagship smartphone lineup on February 25 at its Galaxy Unpacked event in San...

    The Internet’s Favorite Blanket Is 45 Percent Off

    If you’ve spent more than five minutes on TikTok, you’ve probably heard someone rave about Lola Blankets. They’re...

    Some of the Year’s Best Mattress Sales Are on Presidents’ Day. Here’s What We Recommend

    Hooray for a three-day weekend and a little bit of extra time to relax! Presidents’ Day is also...

    Must read

    You might also likeRELATED
    Recommended to you