Electron holography observation of individual ferrimagnetic lattice planes – Nature

-


  • Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibata, N. et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428, 730–733 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rusz, J. et al. Magnetic measurements with atomic-plane resolution. Nat. Commun. 7, 12672 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Idrobo, J. C. et al. Detecting magnetic ordering with atomic size electron probes. Adv. Struct. Chem. Imaging 2, 5 (2016).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Atomic scale imaging of magnetic circular chichroism by achromatic electron microscopy. Nat. Mater. 21, 221–225 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-S. et al. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat. Mater. 12, 703–706 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhu, X. H. et al. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proc. Natl Acad. Sci. USA 113, E8219–E8227 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiesendanger, R. et al. Topographic and magnetic-sensitive scanning tunneling microscopy study of magnetite. Science 255, 583–586 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 294, 1488–1495 (2001).


    Google Scholar
     

  • Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanigaki, T. et al. Magnetic field observations in CoFeB/Ta layers with 0.67-nm resolution by electron holography. Sci. Rep. 7, 16598 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schattschneider, P. et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirota, K., Yonezawa, A., Shibatomi, K. & Yanaka, T. Ferro-magnetic material observation lens system for CTEM with a eucentric goniometer. J. Electron Microsc. 25, 303–304 (1976).


    Google Scholar
     

  • Harada, K. et al. Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51–53 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Schofield, M. A., Beleggia, M., Zhu, Y. & Pozzi, G. Characterization of JEOL 2100 F Lorentz-TEM for low-magnification electron holography and magnetic imaging. Ultramicroscopy 108, 625–634 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunin-Borkowski, R. E. et al. Opportunities for chromatic aberration corrected high-resolution transmission electron microscopy, Lorentz microscopy and electron holography of magnetic minerals. Microsc. Microanal. 18, 1708–1709 (2012).

    Article 

    Google Scholar
     

  • Snoeck, E. et al. Off-axial aberration correction using a B-COR for Lorentz and HREM modes. Microsc. Microanal. 20, 932–933 (2014).

    Article 

    Google Scholar
     

  • O’Shea, K. J. et al. Nanoscale mapping of the magnetic properties of (111)-oriented La0.67Sr0.33MnO3. Nano Lett. 15, 5868–5874 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gatel, C. et al. Size-specific spin configurations in single iron nanomagnet: from flower to exotic vortices. Nano Lett. 15, 6952–6957 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagai, T., Kimoto, K., Inoke, K. & Takeguchi, M. Real-space observation of nanoscale magnetic phase separation in dysprosium by aberration-corrected Lorentz microscopy. Phys. Rev. B 96, 100405 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tanigaki, T., Akashi, T., Takahashi, Y., Kawasaki, T. & Shinada, H. Quest for ultimate resolution using coherent electron waves: an aberration-corrected high-voltage electron microscope. Adv. Imaging Electron Phys. 198, 69–125 (2016).

    Article 

    Google Scholar
     

  • Shibata, N. et al. Atomic resolution electron microscopy in a magnetic field free environment. Nat. Commun. 10, 2308 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akashi, T. et al. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution. Appl. Phys. Lett. 106, 074101 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tomioka, Y. et al. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Phys. Rev. B 61, 442–427 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. B., Lee, B. W. & Kim, C. S. Neutron and Mössbauer studies of the double perovskite A2FeMoO6 (A = Sr and Ba). J. Magn. Magn. Mater. 242–245, 747–750 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Yu, X. et al. TEM study of the influence of antisite defects on magnetic domain structures in double perovskite Ba2FeMoO6. J. Electron Microsc. 54, 61–65 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sahnoun, O., Bouhani-Benziane, H., Sahnoun, M. & Driz, M. Magnetic and thermoelectric properties of ordered double perovskite Ba2FeMoO6. J Alloy. Compd. 714, 704–708 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tamura, T., Kimura, Y. & Takai, Y. Development of a real-time wave field reconstruction TEM system (I): incorporation of an auto focus tracking system. Microscopy 66, 172–181 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Tonomura, A. Electron-holographic interference microscopy. Adv. Phys. 41, 59–103 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Harada, K., Tonomura, A., Togawa, Y., Akashi, T. & Matsuda, T. Double-biprism electron interferometry. Appl. Phys. Lett. 84, 3229–3231 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Voelkl, E. & Tang, D. Approaching routine 2π/1000 phase resolution for off-axis type holography. Ultramicroscopy 110, 447–459 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, T. et al. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography. Ultramicroscopy 118, 21–25 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boureau, V. et al. High-sensitivity mapping of magnetic induction fields with nanometer-scale resolution: comparison of off-axis electron holography and pixelated differential phase contrast. J. Phys. D: Appl. Phys. 54, 085001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tonomura, A. Electron Holography (Springer, 1999).

  • Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohn, A., Petford-Long, A. K. & Anthony, T. C. Magnetic potential in patterned materials determined using energy-dependent Lorentz phase microscopy. Phys. Rev. B 72, 014444 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Genz, F., Niermann, T., Buijsse, B., Freitag, B. & Lehmann, M. Advanced double-biprism holography with atomic resolution. Ultramicroscopy 147, 33–43 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taniguchi, Y., Takai, Y., Ikuta, T. & Shimizu, R. Correction of spherical aberration in HREM image using defocus-modulation image processing. J. Electron Microsc. 41, 21–29 (1992).


    Google Scholar
     

  • Mayer, R. R., Kirkland, A. I. & Saxton, W. O. A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89–109 (2002).

    Article 

    Google Scholar
     

  • Brigham, E. O. The Fast Fourier Transform (Prentice-Hall, 1974).

  • Ishizuka, K. & Uyeda, N. A new theoretical and practical approach to the multislice method. Acta Crystallogr. Sect. A: Found. Adv. A33, 740–749 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dunin-Borkowski, R. E., McCartney, M. R., Smith, D. J. & Parkin, S. S. P. Towards quantitative electron holography of magnetic thin films using in situ magnetization reversal. Ultramicroscopy 74, 61–73 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mansuripur, M. Computation of electron-diffraction patterns in Lorentz electron microscopy of thin magnetic films. J. Appl. Phys. 69, 2455–2464 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mansuripur, M. Computation of electron-diffraction patterns in Lorentz electron microscopy of thin magnetic films (abstract). J. Appl. Phys. 69, 5890 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Beleggia, M., Fazzini, P. F. & Pozzi, G. A Fourier approach to fields and electron optical phase-shifts calculations. Ultramicroscopy 96, 93–103 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    Why OpenAI wanted to buy Cursor but opted for the fast-growing Windsurf

    Anysphere, maker of AI coding assistant Cursor, is growing so quickly that it’s not in the market to...

    The Pressure Is on for Tesla’s Cybercab

    Tesla brought in 20 percent less automotive revenue at the end of last year compared to the year...

    Here’s All the Health and Human Services Data DOGE Has Access To

    Centers for Medicare and Medicaid Services (CMS) Acquisition Lifecycle (CALM)(This manages the contract acquisition process, including “writing contracts,...

    Khloe Kardashian launches consumer brand backed by Serena Ventures, WME

    Khloe Kardashian has formerly launched her new food company, Khloud, and its first product, a protein popcorn, set...

    Must read

    You might also likeRELATED
    Recommended to you