Bowler, J. M., Hope, G. S., Jennings, J. N., Singh, G. & Walker, D. Late Quaternary climates of Australia and New Guinea. Quat. Res. 6, 359–394 (1976).
Sarnthein, M. Sand deserts during glacial maximum and climatic optimum. Nature 272, 43–46 (1978).
Byrne, M. Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quat. Sci. Rev. 27, 2576–2585 (2008).
Mynhardt, S. et al. Phylogeography of a morphologically cryptic Golden Mole assemblage from south-eastern Africa. PLoS ONE 10, e0144995 (2015).
Veth, P. Island in the interior: a model for colonisation of Australia’s arid zone. Archaeol. Oceania 24, 81–92 (1989).
Williams, M. A. J. Late Pleistocene tropical aridity synchronous in both hemispheres? Nature 253, 617–618 (1975).
Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).
Gerhart, L. M. & Ward, J. K. Plant responses to low [CO2] of the past. New Phytol. 188, 674–95 (2010).
Scheff, J., Seager, R., Liu, H. B. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).
Bird, M. I., O’Grady, D. & Ulm, S. Humans, water and the colonization of Australia. Proc. Natl Acad. Sci. USA 113, 11477–11482 (2016).
Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).
Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl Acad. Sci. USA 110, 8777–8781 (2013).
Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).
Gosling, W. D. et al. A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change. Science 376, 653–656 (2022).
Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev. Geophys. 32, 159–195 (1994).
Fuhrmann, F., Diensberg, B., Gong, X., Lohmann, G. & Sirocko, F. Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 16, 2221–2238 (2020).
Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 211, 103790 (2022).
Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).
Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley-Blackwell, 2012).
Ayliffe, L. K. et al. 500 ka precipitation record from southeastern Australia: evidence for interglacial relative aridity. Geology 26, 147–150 (1998).
Weij, R., Woodhead, J., Hellstrom, J. & Sniderman, K. An exploration of the utility of speleothem age distributions for palaeoclimate assessment. Quat. Geochronol. 60, 101112 (2020).
Scroxton, N. et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 823–833 (2016).
Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).
Treble, P. C. et al. Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia’s arid margin interpreted from speleothem records (23–15 ka). Clim. Past 13, 667–687 (2017).
Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79 (2018).
Lamy, F. et al. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl Acad. Sci. USA 116, 23455–23460 (2019).
Collins, J. A., Schefuß, E., Govin, A., Mulitza, S. & Tiedemann, R. Insolation and glacial–interglacial control on southwestern African hydroclimate over the past 140 000 years. Earth Planet. Sci. Lett. 398, 1–10 (2014).
Daniau, A.-L. et al. Precession and obliquity forcing of the South African monsoon revealed by sub-tropical fires. Quat. Sci. Rev. 310, 108128 (2023).
Cruz, F. W. et al. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim. Cosmochim. Acta 71, 2250–2263 (2007).
Dupont, L. M., Caley, T. & Castañeda, I. S. Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa. Clim. Past 15, 1083–1097 (2019).
Dupont, L. M., Zhao, X., Charles, C., Faith, J. T. & Braun, D. Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479). Clim. Past 18, 1–21 (2022).
Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).
Cohen, T. J. et al. Hydrological transformation coincided with megafaunal extinction in central Australia. Geology 43, 195–198 (2015).
Fritz, S. C. et al. Hydrologic variation during the last 170,000 years in the Southern Hemisphere tropics of South America. Quat. Res. 61, 95–104 (2004).
Kristen, I. et al. Hydrological changes in southern Africa over the last 200 ka as recorded in lake sediments from the Tswaing impact crater. S. Afr. J. Geol. 110, 311–326 (2007).
Otto-Bliesner, B. L. et al. Large-scale features of last interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Clim. Past 17, 63–94 (2021).
De Deckker, P. et al. Land–sea correlations in the Australian region: 460 ka of changes recorded in a deep-sea core offshore Tasmania. Part 2: the marine compared with the terrestrial record. Aust. J. Earth Sci. 66, 17–36 (2019).
Petrick, B. et al. Glacial Indonesian throughflow weakening across the Mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).
Stuut, J.-B. W., Temmesfeld, F. & De Deckker, P. A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 83, 83–94 (2014).
Pei, R. et al. Monitoring Australian monsoon variability over the past four glacial cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 568, 110280 (2021).
Dupont, L. M. & Kuhlmann, H. Glacial–interglacial vegetation change in the Zambezi catchment. Quat. Sci. Rev. 155, 127–135 (2017).
Ivory, S. J., Lézine, A.-M., Vincens, A. & Cohen, A. S. Waxing and waning of forests: Late Quaternary biogeography of southeast Africa. Glob. Change Biol. 24, 2939–2951 (2018).
Thompson, J. C. et al. Early human impacts and ecosystem reorganization in southern-central Africa. Sci. Adv. 7, eabf9776 (2021).
Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).
Hesse, P. P. et al. Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quat. Sci. Rev. 200, 85–105 (2018).
von der Meden, J. et al. Tufas indicate prolonged periods of water availability linked to human occupation in the southern Kalahari. PLoS ONE 17, e0270104 (2022).
Carr, A. S. et al. Paleolakes and socioecological implications of last glacial “greening” of the South African interior. Proc. Natl Acad. Sci. USA 120, e2221082120 (2023).
Novello, V. F. et al. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524, 115717 (2019).
Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).
Cohen, T. J. et al. Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: varying moisture sources and increased continental aridity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 356–357, 89–108 (2012).
Sniderman, J. M. K. et al. Vegetation and climate change in southwestern Australia during the Last Glacial Maximum. Geophys. Res. Lett. 46, 1709–1720 (2019).
Prentice, I. C., Guiot, J. & Harrison, S. P. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, 658–660 (1992).
Zagwijn, W. H. Vegetation, climate and time-correlations in the Early Pleistocene of Europe. Geol. Mijnbouw 19, 233–244 (1957).
Byrne M. et al. in Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot (ed. Lambers, H.) 81–99 (Univ. Western Australia Press, 2014).
Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the Last Glacial Maximum and Terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeolog. Sci. 40, 4612–4625 (2013).
Holdgate, G. & Gallagher, S. J. Tertiary: a period of transition to marine basin environments. Geol. Soc. Spec. Publ. 23, 289–335 (2003).
Reed, E. H. World Heritage values and conservation status of the Australian fossil mammal sites (Riversleigh/ Naracoorte). Z. Geomorphol. 62, 213–233 (2021).
Playford, P. E., Cockbain, A. E. & Low, G. H. Geology of the Perth Basin, Western Australia. Geol. Surv. Western Australia Bull. 124, 1–311 (1976).
Columbu, A., Calabrò, L., Chiarini, V. & De Waele, J. Stalagmites: from science application to museumization. Geoheritage 13, 47 (2021).
Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J. Anal. At. Spectrom. 18, 1346–1351 (2003).
Weij, R. et al. Cave opening and fossil accumulation in Naracoorte, Australia, through charcoal and pollen in dated speleothems. Commun. Earth Environ. 3, 210 (2022).
Woodhead, J. et al. Timescales of speleogenesis in an evolving syngenetic karst: the Tamala Limestone, Western Australia. Geomorphology 399, 108079 (2022).
Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 1, 289–295 (2006).
Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).
Baker, A., Smart, P. L. & Ford, D. C. Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 100, 291–301 (1993).
Markowska, M. et al. Semi-arid zone caves: evaporation and hydrological controls on δ18O drip water composition and implications for speleothem paleoclimate reconstructions. Quat. Sci. Rev. 131, 285–301 (2016).
Baker, A. et al. Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nat. Commun. 10, 2984 (2019).
Chase, B. et al. South African speleothems reveal influence of high- and low-latitude forcing over the past 113.5 k.y. Geology 49, 1353–1357 (2021).
Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015).
Fohlmeister, J. et al. Main controls on the stable carbon isotope composition of speleothems. Geochim. Cosmochim. Acta 279, 67–87 (2020).
Treble, P. C. et al. Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Commun. Earth Environ. 3, 29 (2022).
Scholz, D. & Mangini, A. Estimating the uncertainty of coral isochron U–Th ages. Quat. Geochronol. 1, 279–288 (2006).
Sniderman, J. M. K. et al. Pliocene reversal of late Neogene aridification. Proc. Natl Acad. Sci. USA 113, 1999–2004 (2016).
Matley, K. A., Sniderman, J. M. K., Drinnan, A. D. & Hellstrom, J. C. Late-Holocene environmental change on the Nullarbor Plain, southwest Australia, based on speleothem pollen records. Holocene 30, 672–681 (2020).
Bennett, K. D. & Willis, K. J. in Tracking Environmental Change Using Lake Sediments Vol. 3 (eds Smol, J. P. et al.) 5–32 (Kluwer Academic, 2001).
Munsterman, D. & Kerstholt, S. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Rev. Palaeobot. Palynol. 91, 417–422 (1996).
Members, A. The Australasian Pollen and Spore Atlas V.1.0 (Australian National Univ., 2020).
Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Prof. Geogr. 44, 84–88 (1992).
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Mast, A. R. & Givnish, T. J. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Am. J. Bot. 89, 1311–1323 (2002).
Kron, K. A. et al. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68, 335–423 (2002).
Chao, Y.-S. & Huang, Y.-M. Spore morphology and its systematic implication in Pteris (Pteridaceae). PLoS ONE 13, e0207712 (2018).
McGlone, M. S. Pollen structure of the New Zealand members of the Styphelieae (Epacridaceae). NZ J. Bot. 16, 91–101 (1978).
Martin, H. A. Monotoca-type (Epacridaceae) pollen in the Late Tertiary of southern Australia. Australian J. Bot. 41, 709–720 (1993).
Taaffe, G., Brown, E. A., Crayn, D. M., Gadek, P. A. & Quinn, C. J. Generic concepts in Styphelieae: resolving the limits of Leucopogon. Australian J. Bot. 49, 107–120 (2001).
Wurdack, K. J., Hoffmann, P. & Chase, M. W. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. Am. J. Bot. 92, 1397–1420 (2005).
Nowicke, J. W., Takahashi, M. & Webster, G. L. Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae)—Part 1. Tribes Clutieae (Clutia), Pogonophoreae (Pogonophora), Chaetocarpeae (Chaetocarpus, Trigonopleura), Pereae (Pera), Cheiloseae (Cheilosa, Neoscortechinia), Erismantheae pro parte (Erismanthus, Moultonianthus), Dicoelieae (Dicoelia), Galearieae (Galearia, Microdesmis, Panda) and Ampereae (Amperea, Monotaxis). Rev. Palaeobot. Palynol. 102, 115–152 (1998).
Robbrecht, E. Pollen morphology of the tribes Anthospermeae and Paederieae (Rubiaceae) in relation to taxonomy. Bull. Jard. Bot. Natl Belg. 52, 349–366 (1982).
R Core Group R: A Language and Environment for Statistical Computing (Foundation for Statistical Computing, 2022).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2 (CGIAR-CSI, 2018).
Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
raster: Geographic Data Analysis and Modeling. R package version 3.5-21 (2022).
Atkinson, T. C., Briffa, K. R. & Coope, G. R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, 587–592 (1987).
Thompson, R. S. et al. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique. Quat. Sci. Rev. 51, 18–39 (2012).
Chevalier, M. et al. Pollen-based climate reconstruction techniques for Late Quaternary studies. Earth Sci. Rev. 210, 103384 (2020).
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Campos, M. C. et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America. Quat. Sci. Rev. 225, 105990 (2019).
Govin, A. et al. Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka. Clim. Past 10, 843–862 (2014).
geoChronR: Tools to Analyze and Visualize Time-Uncertain Data. R package version 1.1.7 (2021).
Meyers, S.R. astrochron: An R Package for Astrochronology https://cran.r-project.org/package=astrochron (2014).
Thompson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).
Vaughan, S., Bailey, R. J. & Smith, D. G. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography https://doi.org/10.1029/2011PA002195 (2011).
Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. EOS Trans. 77, 379 (1996).
Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden Day, 1968).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman & Hall, 2017).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2021).
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. qgam: Bayesian nonparametric quantile regression modeling in R. J. Stat. Softw. 100, 1–31 (2021).
mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R package version 1.8-40 (2021).
Hu, J., Emile-Geay, J. & Partin, J. Correlation-based interpretations of paleoclimate data—where statistics meet past climates. Earth Planet. Sci. Lett. 459, 362–371 (2017).
Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.3.3 https://CRAN.R-project.org/package=rnaturalearth (2023).