Elevated Southern Hemisphere moisture availability during glacial periods – Nature

    0
    Elevated Southern Hemisphere moisture availability during glacial periods – Nature


  • Bowler, J. M., Hope, G. S., Jennings, J. N., Singh, G. & Walker, D. Late Quaternary climates of Australia and New Guinea. Quat. Res. 6, 359–394 (1976).

    Article 

    Google Scholar
     

  • Sarnthein, M. Sand deserts during glacial maximum and climatic optimum. Nature 272, 43–46 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Byrne, M. Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quat. Sci. Rev. 27, 2576–2585 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Mynhardt, S. et al. Phylogeography of a morphologically cryptic Golden Mole assemblage from south-eastern Africa. PLoS ONE 10, e0144995 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veth, P. Island in the interior: a model for colonisation of Australia’s arid zone. Archaeol. Oceania 24, 81–92 (1989).

    Article 

    Google Scholar
     

  • Williams, M. A. J. Late Pleistocene tropical aridity synchronous in both hemispheres? Nature 253, 617–618 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhart, L. M. & Ward, J. K. Plant responses to low [CO2] of the past. New Phytol. 188, 674–95 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Scheff, J., Seager, R., Liu, H. B. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bird, M. I., O’Grady, D. & Ulm, S. Humans, water and the colonization of Australia. Proc. Natl Acad. Sci. USA 113, 11477–11482 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl Acad. Sci. USA 110, 8777–8781 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gosling, W. D. et al. A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change. Science 376, 653–656 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev. Geophys. 32, 159–195 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Fuhrmann, F., Diensberg, B., Gong, X., Lohmann, G. & Sirocko, F. Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 16, 2221–2238 (2020).

    Article 

    Google Scholar
     

  • Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 211, 103790 (2022).

    Article 

    Google Scholar
     

  • Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).

    Article 

    Google Scholar
     

  • Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley-Blackwell, 2012).

  • Ayliffe, L. K. et al. 500 ka precipitation record from southeastern Australia: evidence for interglacial relative aridity. Geology 26, 147–150 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weij, R., Woodhead, J., Hellstrom, J. & Sniderman, K. An exploration of the utility of speleothem age distributions for palaeoclimate assessment. Quat. Geochronol. 60, 101112 (2020).

    Article 

    Google Scholar
     

  • Scroxton, N. et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 823–833 (2016).

    Article 

    Google Scholar
     

  • Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).

    Article 

    Google Scholar
     

  • Treble, P. C. et al. Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia’s arid margin interpreted from speleothem records (23–15 ka). Clim. Past 13, 667–687 (2017).

    Article 

    Google Scholar
     

  • Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamy, F. et al. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl Acad. Sci. USA 116, 23455–23460 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, J. A., Schefuß, E., Govin, A., Mulitza, S. & Tiedemann, R. Insolation and glacial–interglacial control on southwestern African hydroclimate over the past 140 000 years. Earth Planet. Sci. Lett. 398, 1–10 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Daniau, A.-L. et al. Precession and obliquity forcing of the South African monsoon revealed by sub-tropical fires. Quat. Sci. Rev. 310, 108128 (2023).

    Article 

    Google Scholar
     

  • Cruz, F. W. et al. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim. Cosmochim. Acta 71, 2250–2263 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dupont, L. M., Caley, T. & Castañeda, I. S. Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa. Clim. Past 15, 1083–1097 (2019).

    Article 

    Google Scholar
     

  • Dupont, L. M., Zhao, X., Charles, C., Faith, J. T. & Braun, D. Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479). Clim. Past 18, 1–21 (2022).

    Article 

    Google Scholar
     

  • Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, T. J. et al. Hydrological transformation coincided with megafaunal extinction in central Australia. Geology 43, 195–198 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fritz, S. C. et al. Hydrologic variation during the last 170,000 years in the Southern Hemisphere tropics of South America. Quat. Res. 61, 95–104 (2004).

    Article 

    Google Scholar
     

  • Kristen, I. et al. Hydrological changes in southern Africa over the last 200 ka as recorded in lake sediments from the Tswaing impact crater. S. Afr. J. Geol. 110, 311–326 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Otto-Bliesner, B. L. et al. Large-scale features of last interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Clim. Past 17, 63–94 (2021).

    Article 

    Google Scholar
     

  • De Deckker, P. et al. Land–sea correlations in the Australian region: 460 ka of changes recorded in a deep-sea core offshore Tasmania. Part 2: the marine compared with the terrestrial record. Aust. J. Earth Sci. 66, 17–36 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Petrick, B. et al. Glacial Indonesian throughflow weakening across the Mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuut, J.-B. W., Temmesfeld, F. & De Deckker, P. A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 83, 83–94 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pei, R. et al. Monitoring Australian monsoon variability over the past four glacial cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 568, 110280 (2021).

    Article 

    Google Scholar
     

  • Dupont, L. M. & Kuhlmann, H. Glacial–interglacial vegetation change in the Zambezi catchment. Quat. Sci. Rev. 155, 127–135 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ivory, S. J., Lézine, A.-M., Vincens, A. & Cohen, A. S. Waxing and waning of forests: Late Quaternary biogeography of southeast Africa. Glob. Change Biol. 24, 2939–2951 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, J. C. et al. Early human impacts and ecosystem reorganization in southern-central Africa. Sci. Adv. 7, eabf9776 (2021).

  • Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Hesse, P. P. et al. Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quat. Sci. Rev. 200, 85–105 (2018).

    Article 
    ADS 

    Google Scholar
     

  • von der Meden, J. et al. Tufas indicate prolonged periods of water availability linked to human occupation in the southern Kalahari. PLoS ONE 17, e0270104 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, A. S. et al. Paleolakes and socioecological implications of last glacial “greening” of the South African interior. Proc. Natl Acad. Sci. USA 120, e2221082120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novello, V. F. et al. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524, 115717 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, T. J. et al. Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: varying moisture sources and increased continental aridity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 356–357, 89–108 (2012).

    Article 

    Google Scholar
     

  • Sniderman, J. M. K. et al. Vegetation and climate change in southwestern Australia during the Last Glacial Maximum. Geophys. Res. Lett. 46, 1709–1720 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Prentice, I. C., Guiot, J. & Harrison, S. P. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, 658–660 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Zagwijn, W. H. Vegetation, climate and time-correlations in the Early Pleistocene of Europe. Geol. Mijnbouw 19, 233–244 (1957).


    Google Scholar
     

  • Byrne M. et al. in Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot (ed. Lambers, H.) 81–99 (Univ. Western Australia Press, 2014).

  • Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the Last Glacial Maximum and Terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeolog. Sci. 40, 4612–4625 (2013).

    Article 

    Google Scholar
     

  • Holdgate, G. & Gallagher, S. J. Tertiary: a period of transition to marine basin environments. Geol. Soc. Spec. Publ. 23, 289–335 (2003).


    Google Scholar
     

  • Reed, E. H. World Heritage values and conservation status of the Australian fossil mammal sites (Riversleigh/ Naracoorte). Z. Geomorphol. 62, 213–233 (2021).

    Article 

    Google Scholar
     

  • Playford, P. E., Cockbain, A. E. & Low, G. H. Geology of the Perth Basin, Western Australia. Geol. Surv. Western Australia Bull. 124, 1–311 (1976).

    CAS 

    Google Scholar
     

  • Columbu, A., Calabrò, L., Chiarini, V. & De Waele, J. Stalagmites: from science application to museumization. Geoheritage 13, 47 (2021).

    Article 

    Google Scholar
     

  • Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J. Anal. At. Spectrom. 18, 1346–1351 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Weij, R. et al. Cave opening and fossil accumulation in Naracoorte, Australia, through charcoal and pollen in dated speleothems. Commun. Earth Environ. 3, 210 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Woodhead, J. et al. Timescales of speleogenesis in an evolving syngenetic karst: the Tamala Limestone, Western Australia. Geomorphology 399, 108079 (2022).

    Article 

    Google Scholar
     

  • Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 1, 289–295 (2006).

    Article 

    Google Scholar
     

  • Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Baker, A., Smart, P. L. & Ford, D. C. Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 100, 291–301 (1993).

    Article 

    Google Scholar
     

  • Markowska, M. et al. Semi-arid zone caves: evaporation and hydrological controls on δ18O drip water composition and implications for speleothem paleoclimate reconstructions. Quat. Sci. Rev. 131, 285–301 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Baker, A. et al. Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nat. Commun. 10, 2984 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chase, B. et al. South African speleothems reveal influence of high- and low-latitude forcing over the past 113.5 k.y. Geology 49, 1353–1357 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fohlmeister, J. et al. Main controls on the stable carbon isotope composition of speleothems. Geochim. Cosmochim. Acta 279, 67–87 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Treble, P. C. et al. Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Commun. Earth Environ. 3, 29 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Scholz, D. & Mangini, A. Estimating the uncertainty of coral isochron U–Th ages. Quat. Geochronol. 1, 279–288 (2006).

    Article 

    Google Scholar
     

  • Sniderman, J. M. K. et al. Pliocene reversal of late Neogene aridification. Proc. Natl Acad. Sci. USA 113, 1999–2004 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matley, K. A., Sniderman, J. M. K., Drinnan, A. D. & Hellstrom, J. C. Late-Holocene environmental change on the Nullarbor Plain, southwest Australia, based on speleothem pollen records. Holocene 30, 672–681 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bennett, K. D. & Willis, K. J. in Tracking Environmental Change Using Lake Sediments Vol. 3 (eds Smol, J. P. et al.) 5–32 (Kluwer Academic, 2001).

  • Munsterman, D. & Kerstholt, S. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Rev. Palaeobot. Palynol. 91, 417–422 (1996).

    Article 

    Google Scholar
     

  • Members, A. The Australasian Pollen and Spore Atlas V.1.0 (Australian National Univ., 2020).

  • Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Prof. Geogr. 44, 84–88 (1992).

    Article 

    Google Scholar
     

  • Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mast, A. R. & Givnish, T. J. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Am. J. Bot. 89, 1311–1323 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kron, K. A. et al. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68, 335–423 (2002).

    Article 

    Google Scholar
     

  • Chao, Y.-S. & Huang, Y.-M. Spore morphology and its systematic implication in Pteris (Pteridaceae). PLoS ONE 13, e0207712 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGlone, M. S. Pollen structure of the New Zealand members of the Styphelieae (Epacridaceae). NZ J. Bot. 16, 91–101 (1978).

    Article 

    Google Scholar
     

  • Martin, H. A. Monotoca-type (Epacridaceae) pollen in the Late Tertiary of southern Australia. Australian J. Bot. 41, 709–720 (1993).

    Article 

    Google Scholar
     

  • Taaffe, G., Brown, E. A., Crayn, D. M., Gadek, P. A. & Quinn, C. J. Generic concepts in Styphelieae: resolving the limits of Leucopogon. Australian J. Bot. 49, 107–120 (2001).

    Article 

    Google Scholar
     

  • Wurdack, K. J., Hoffmann, P. & Chase, M. W. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. Am. J. Bot. 92, 1397–1420 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowicke, J. W., Takahashi, M. & Webster, G. L. Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae)—Part 1. Tribes Clutieae (Clutia), Pogonophoreae (Pogonophora), Chaetocarpeae (Chaetocarpus, Trigonopleura), Pereae (Pera), Cheiloseae (Cheilosa, Neoscortechinia), Erismantheae pro parte (Erismanthus, Moultonianthus), Dicoelieae (Dicoelia), Galearieae (Galearia, Microdesmis, Panda) and Ampereae (Amperea, Monotaxis). Rev. Palaeobot. Palynol. 102, 115–152 (1998).

    Article 

    Google Scholar
     

  • Robbrecht, E. Pollen morphology of the tribes Anthospermeae and Paederieae (Rubiaceae) in relation to taxonomy. Bull. Jard. Bot. Natl Belg. 52, 349–366 (1982).

    Article 

    Google Scholar
     

  • R Core Group R: A Language and Environment for Statistical Computing (Foundation for Statistical Computing, 2022).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2 (CGIAR-CSI, 2018).

  • Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Article 
    ADS 

    Google Scholar
     

  • raster: Geographic Data Analysis and Modeling. R package version 3.5-21 (2022).

  • Atkinson, T. C., Briffa, K. R. & Coope, G. R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, 587–592 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, R. S. et al. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique. Quat. Sci. Rev. 51, 18–39 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chevalier, M. et al. Pollen-based climate reconstruction techniques for Late Quaternary studies. Earth Sci. Rev. 210, 103384 (2020).

    Article 

    Google Scholar
     

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar
     

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Campos, M. C. et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America. Quat. Sci. Rev. 225, 105990 (2019).

    Article 

    Google Scholar
     

  • Govin, A. et al. Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka. Clim. Past 10, 843–862 (2014).

    Article 

    Google Scholar
     

  • geoChronR: Tools to Analyze and Visualize Time-Uncertain Data. R package version 1.1.7 (2021).

  • Meyers, S.R. astrochron: An R Package for Astrochronology https://cran.r-project.org/package=astrochron (2014).

  • Thompson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Vaughan, S., Bailey, R. J. & Smith, D. G. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography https://doi.org/10.1029/2011PA002195 (2011).

  • Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. EOS Trans. 77, 379 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden Day, 1968).

  • Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman & Hall, 2017).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).

  • Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. qgam: Bayesian nonparametric quantile regression modeling in R. J. Stat. Softw. 100, 1–31 (2021).

    Article 

    Google Scholar
     

  • mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R package version 1.8-40 (2021).

  • Hu, J., Emile-Geay, J. & Partin, J. Correlation-based interpretations of paleoclimate data—where statistics meet past climates. Earth Planet. Sci. Lett. 459, 362–371 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.3.3 https://CRAN.R-project.org/package=rnaturalearth (2023).



  • Source link