Wong, J. L. & Wessel, G. M. Defending the zygote: seek for the ancestral animal block to polyspermy. Curr. Top. Dev. Biol. 72, 1–151 (2006).
Burkart, A. D., Xiong, B., Baibakov, B., Jiménez-Movilla, M. & Dean, J. Ovastacin, a cortical granule protease, cleaves ZP2 within the zona pellucida to forestall polyspermy. J. Cell Biol. 197, 37–44 (2012).
Vacquier, V. D., Tegner, M. J. & Epel, D. Protease exercise establishes the block towards polyspermy in sea urchin eggs. Nature 240, 352–353 (1972).
Liu, M. The biology and dynamics of mammalian cortical granules. Reprod. Biol. Endocrinol. 9, 149 (2011).
Johnson, M. A., Harper, J. F. & Palanivelu, R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70, 809–837 (2019).
Dresselhaus, T., Sprunck, S. & Wessel, G. M. Fertilization mechanisms in flowering crops. Curr. Biol. 26, R125–R139 (2016).
Beale, Ok. M., Leydon, A. R. & Johnson, M. A. Gamete fusion is required to block a number of pollen tubes from coming into an Arabidopsis ovule. Curr. Biol. 22, 1090–1094 (2012).
Maruyama, D. et al. Independent management by every feminine gamete prevents the attraction of a number of pollen tubes. Dev. Cell 25, 317–323 (2013).
Zhang, J. et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat. Plants 3, 17079 (2017).
Glöckle, B. et al. Pollen differentiation in addition to pollen tube steering and discharge are unbiased of the presence of gametes. Development 145, dev152645 (2018).
Zhou, L. Z. & Dresselhaus, T. Friend or foe: signaling mechanisms throughout double fertilization in flowering seed crops. Curr. Top. Dev. Biol. 131, 453–496 (2019).
Grossniklaus, U. Polyspermy produces tri-parental seeds in maize. Curr. Biol. 27, R1300–R1302 (2017).
Nakel, T. et al. Triparental crops present direct proof for polyspermy induced polyploidy. Nat. Commun. 8, 1033 (2017).
Márton, M. L., Cordts, S., Broadhvest, J. & Dresselhaus, T. Micropylar pollen tube steering by egg equipment 1 of maize. Science 307, 573–576 (2005).
Takeuchi, H. & Higashiyama, T. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol. 10, e1001449 (2012).
Okuda, S. et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361 (2009).
Zhong, S. et al. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364, eaau9564 (2019).
Sandaklie-Nikolova, L., Palanivelu, R., King, E. J., Copenhaver, G. P. & Drews, G. N. Synergid cell demise in Arabidopsis is triggered following direct interplay with the pollen tube. Plant Physiol. 144, 1753–1762 (2007).
Duan, Q. et al. FERONIA controls pectin- and nitric oxide-mediated male-female interplay. Nature 579, 561–566 (2020).
Maruyama, D. et al. Rapid elimination of the persistent synergid by way of a cell fusion mechanism. Cell 161, 907–918 (2015).
Kasahara, R. D. et al. Fertilization restoration after faulty sperm cell launch in Arabidopsis. Curr. Biol. 22, 1084–1089 (2012).
Sprunck, S. et al. Egg cell-secreted EC1 triggers sperm cell activation throughout double fertilization. Science 338, 1093–1097 (2012).
Simões, I., Faro, R., Bur, D. & Faro, C. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase concerned in illness resistance. J. Biol. Chem. 282, 31358–31365 (2007).
Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. GENERATIVE CELL SPECIFIC 1 is important for angiosperm fertilization. Nat. Cell Biol. 8, 64–71 (2006).
Mori, T., Igawa, T., Tamiya, G., Miyagishima, S. Y. & Berger, F. Gamete attachment requires GEX2 for profitable fertilization in Arabidopsis. Curr. Biol. 24, 170–175 (2014).
Steffen, J. G., Kang, I. H., Macfarlane, J. & Drews, G. N. Identification of genes expressed within the Arabidopsis feminine gametophyte. Plant J. 51, 281–292 (2007).
Bleckmann, A. & Dresselhaus, T. Whole mount RNA-FISH on ovules and growing seeds. Methods Mol. Biol. 1669, 159–171 (2017).
Zimmerberg, J. & Whitaker, M. Irreversible swelling of secretory granules throughout exocytosis brought on by calcium. Nature 315, 581–584 (1985).
Antoine, A. F. et al. A calcium inflow is triggered and propagates within the zygote as a wavefront throughout in vitro fertilization of flowering crops. Proc. Natl Acad. Sci. USA 97, 10643–10648 (2000).
Digonnet, C., Aldon, D., Leduc, N., Dumas, C. & Rougier, M. First proof of a calcium transient in flowering crops at fertilization. Development 124, 2867–2874 (1997).
Denninger, P. et al. Male–feminine communication triggers calcium signatures throughout fertilization in Arabidopsis. Nat. Commun. 5, 4645 (2014).
Hamamura, Y. et al. Live imaging of calcium spikes throughout double fertilization in Arabidopsis. Nat. Commun. 5, 4722 (2014).
Kranz, E., von Wiegen, P. & Lörz, H. Early cytological occasions after induction of cell division in egg cells and zygote improvement following in vitro fertilization with angiosperm gametes. Plant J. 8, 9–23 (1995).
Wu, J. J. et al. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling through the maturation of Arabidopsis feminine gametes. Dev. Cell 23, 1043–1058 (2012).
Lampropoulos, A. et al. GreenGate—a novel, versatile, and environment friendly cloning system for plant transgenesis. PLoS ONE 8, e83043 (2013).
Nelson, B. Ok., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization research in Arabidopsis and different crops. Plant J. 51, 1126–1136 (2007).
Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana utilizing the floral dip methodology. Nat. Protoc. 1, 641–646 (2006).
Wang, T. et al. A receptor heteromer mediates the male notion of feminine attractants in crops. Nature 531, 241–244 (2016).
Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco crops and era of stably remodeled crops. Nat. Protoc. 1, 2019–2025 (2006).
Soares, A. et al. An atypical aspartic protease modulates lateral root improvement in Arabidopsis thaliana. J. Exp. Bot. 70, 2157–2171 (2019).
Zhao, P. et al. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49, 882–893 (2019).