Fertilized egg cells secrete endopeptidases to avoid polytubey

-


  • 1.

    Wong, J. L. & Wessel, G. M. Defending the zygote: seek for the ancestral animal block to polyspermy. Curr. Top. Dev. Biol. 72, 1–151 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Burkart, A. D., Xiong, B., Baibakov, B., Jiménez-Movilla, M. & Dean, J. Ovastacin, a cortical granule protease, cleaves ZP2 within the zona pellucida to forestall polyspermy. J. Cell Biol. 197, 37–44 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Vacquier, V. D., Tegner, M. J. & Epel, D. Protease exercise establishes the block towards polyspermy in sea urchin eggs. Nature 240, 352–353 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Liu, M. The biology and dynamics of mammalian cortical granules. Reprod. Biol. Endocrinol. 9, 149 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Johnson, M. A., Harper, J. F. & Palanivelu, R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70, 809–837 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Dresselhaus, T., Sprunck, S. & Wessel, G. M. Fertilization mechanisms in flowering crops. Curr. Biol. 26, R125–R139 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Beale, Ok. M., Leydon, A. R. & Johnson, M. A. Gamete fusion is required to block a number of pollen tubes from coming into an Arabidopsis ovule. Curr. Biol. 22, 1090–1094 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Maruyama, D. et al. Independent management by every feminine gamete prevents the attraction of a number of pollen tubes. Dev. Cell 25, 317–323 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zhang, J. et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat. Plants 3, 17079 (2017).

    Article 

    Google Scholar
     

  • 10.

    Glöckle, B. et al. Pollen differentiation in addition to pollen tube steering and discharge are unbiased of the presence of gametes. Development 145, dev152645 (2018).

    Article 

    Google Scholar
     

  • 11.

    Zhou, L. Z. & Dresselhaus, T. Friend or foe: signaling mechanisms throughout double fertilization in flowering seed crops. Curr. Top. Dev. Biol. 131, 453–496 (2019).

    Article 

    Google Scholar
     

  • 12.

    Grossniklaus, U. Polyspermy produces tri-parental seeds in maize. Curr. Biol. 27, R1300–R1302 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Nakel, T. et al. Triparental crops present direct proof for polyspermy induced polyploidy. Nat. Commun. 8, 1033 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Márton, M. L., Cordts, S., Broadhvest, J. & Dresselhaus, T. Micropylar pollen tube steering by egg equipment 1 of maize. Science 307, 573–576 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Takeuchi, H. & Higashiyama, T. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol. 10, e1001449 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Okuda, S. et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Zhong, S. et al. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364, eaau9564 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Sandaklie-Nikolova, L., Palanivelu, R., King, E. J., Copenhaver, G. P. & Drews, G. N. Synergid cell demise in Arabidopsis is triggered following direct interplay with the pollen tube. Plant Physiol. 144, 1753–1762 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Duan, Q. et al. FERONIA controls pectin- and nitric oxide-mediated male-female interplay. Nature 579, 561–566 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Maruyama, D. et al. Rapid elimination of the persistent synergid by way of a cell fusion mechanism. Cell 161, 907–918 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Kasahara, R. D. et al. Fertilization restoration after faulty sperm cell launch in Arabidopsis. Curr. Biol. 22, 1084–1089 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Sprunck, S. et al. Egg cell-secreted EC1 triggers sperm cell activation throughout double fertilization. Science 338, 1093–1097 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Simões, I., Faro, R., Bur, D. & Faro, C. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase concerned in illness resistance. J. Biol. Chem. 282, 31358–31365 (2007).

    Article 

    Google Scholar
     

  • 24.

    Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. GENERATIVE CELL SPECIFIC 1 is important for angiosperm fertilization. Nat. Cell Biol. 8, 64–71 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Mori, T., Igawa, T., Tamiya, G., Miyagishima, S. Y. & Berger, F. Gamete attachment requires GEX2 for profitable fertilization in Arabidopsis. Curr. Biol. 24, 170–175 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Steffen, J. G., Kang, I. H., Macfarlane, J. & Drews, G. N. Identification of genes expressed within the Arabidopsis feminine gametophyte. Plant J. 51, 281–292 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Bleckmann, A. & Dresselhaus, T. Whole mount RNA-FISH on ovules and growing seeds. Methods Mol. Biol. 1669, 159–171 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Zimmerberg, J. & Whitaker, M. Irreversible swelling of secretory granules throughout exocytosis brought on by calcium. Nature 315, 581–584 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Antoine, A. F. et al. A calcium inflow is triggered and propagates within the zygote as a wavefront throughout in vitro fertilization of flowering crops. Proc. Natl Acad. Sci. USA 97, 10643–10648 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Digonnet, C., Aldon, D., Leduc, N., Dumas, C. & Rougier, M. First proof of a calcium transient in flowering crops at fertilization. Development 124, 2867–2874 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Denninger, P. et al. Male–feminine communication triggers calcium signatures throughout fertilization in Arabidopsis. Nat. Commun. 5, 4645 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Hamamura, Y. et al. Live imaging of calcium spikes throughout double fertilization in Arabidopsis. Nat. Commun. 5, 4722 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kranz, E., von Wiegen, P. & Lörz, H. Early cytological occasions after induction of cell division in egg cells and zygote improvement following in vitro fertilization with angiosperm gametes. Plant J. 8, 9–23 (1995).

    Article 

    Google Scholar
     

  • 34.

    Wu, J. J. et al. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling through the maturation of Arabidopsis feminine gametes. Dev. Cell 23, 1043–1058 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Lampropoulos, A. et al. GreenGate—a novel, versatile, and environment friendly cloning system for plant transgenesis. PLoS ONE 8, e83043 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Nelson, B. Ok., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization research in Arabidopsis and different crops. Plant J. 51, 1126–1136 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana utilizing the floral dip methodology. Nat. Protoc. 1, 641–646 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Wang, T. et al. A receptor heteromer mediates the male notion of feminine attractants in crops. Nature 531, 241–244 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco crops and era of stably remodeled crops. Nat. Protoc. 1, 2019–2025 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Soares, A. et al. An atypical aspartic protease modulates lateral root improvement in Arabidopsis thaliana. J. Exp. Bot. 70, 2157–2171 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Zhao, P. et al. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49, 882–893 (2019).



  • Source link

    Ariel Shapiro
    Ariel Shapiro
    Uncovering the latest of tech and business.

    Latest news

    The Government Shutdown Is a Ticking Cybersecurity Time Bomb

    Amid a government shutdown that has dragged on for more than five weeks, the United States Congressional Budget...

    (BPRW) Project 2030: The Agenda for Black America Debuts #1 on Amazon | Tech Zone Daily

    (BPRW) Project 2030: The Agenda for Black America Debuts #1 on Amazon ...

    Don’t Sleep on This Brooklinen Flash Sale

    Winter bedding is different from summer bedding—thicker, loftier, softer, cozier—and now's the perfect time to upgrade thanks to...

    Branch’s Sale of the Year Brings Great Discounts to Our Favorite Home Office Gear

    It's hard to find home office furniture that looks great at a palatable price. That's why you'll find...

    Score a Big Discount on Razer’s Ultra-Thin But High-Performing Blade 14 Gaming Laptop

    Razer's updated Blade 14 with an OLED may not have been available for long, but that won't stop...

    Must read

    You might also likeRELATED
    Recommended to you