Functional amyloid proteins confer defence against predatory bacteria – Nature

-


  • Sockett, R. E. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol. 63, 523–539 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, T. F., Ford, R. M. & Huwiler, S. G. Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery. Front. Microbiol. 14, 1168709 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, M. L. & Chapman, M. R. Curli biogenesis: order out of disorder. Biochim. Biophys. Acta 1843, 1551–1558 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santin, Y. G., Lamot, T., Van Raaphorst, R., Kaljević, J. & Laloux, G. Modulation of prey size reveals adaptability and robustness in the cell cycle of an intracellular predator. Curr. Biol. 33, 2213–2222.e4 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

  • Aharon, E. et al. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res. Microbiol. 172, 103878 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koval, S. F. & Hynes, S. H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol. 173, 2244–2249 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan, M. C. et al. High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. mBio 10, e01040–19 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shemesh, Y. & Jurkevitch, E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ. Microbiol. 6, 12–18 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell, R. J., Mun, W., Mabekou, S. S., Jang, H. & Choi, S. Y. Compounds affecting predation by and viability of predatory bacteria. Appl. Microbiol. Biotechnol. 104, 3705–3713 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mun, W. et al. Cyanide production by Chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. mBio 8, e01370–17 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwidar, M., Nam, D. & Mitchell, R. J. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ. Microbiol. 17, 1009–1022 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshiko, Y. et al. Quinolone signals related to Pseudomonas quinolone signal-quorum sensing inhibits the predatory activity of Bdellovibrio bacteriovorus. Front. Microbiol. 12, 722579 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwidar, M. et al. Diffusible signaling factor, a quorum-sensing molecule, interferes with and is toxic towards Bdellovibrio bacteriovorus 109J. Microb. Ecol. 81, 347–356 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochman, H. & Selander, R. K. Standard reference strains of Escherichia coli from natural populations. J. Bacteriol. 157, 690–693 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, I. R. et al. Draft genome sequences of the Escherichia coli Reference (ECOR) collection. Microbiol. Resour. Announc. https://doi.org/10.1128/mra.01133-18 (2018).

  • Hoshiko, Y., Okuno, M., Yamamoto, T., Maeda, T. & Ogura, Y. Improved complete genome sequence of Bdellovibrio bacteriovorus 109J, a widely studied laboratory strain of predatory bacteria. Microbiol. Resour. Announc. https://doi.org/10.1128/mra.01296-23 (2024).

  • Ogasawara, H., Yamamoto, K. & Ishihama, A. Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. FEMS Microbiol. Lett. 312, 160–168 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K. & Ishihama, A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 156, 2470–2483 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, P. K. et al. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol. Microbiol. 41, 349–363 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serra, D. O., Richter, A. M. & Hengge, R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acheson, J. F., Derewenda, Z. S. & Zimmer, J. Architecture of the cellulose synthase outer membrane channel and its association with the periplasmic TPR domain. Structure 27, 1855–1861.e3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsén, A., Arnqvist, A., Hammar, M., Sukupolvi, S. & Normark, S. The RpoS Sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol. Microbiol. 7, 523–536 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Reshamwala, S. M. S. & Noronha, S. B. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis. Arch. Microbiol. 193, 711–722 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jubelin, G. et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038–2049 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mun, W., Upatissa, S., Lim, S., Dwidar, M. & Mitchell, R. J. Outer membrane porin F in E. coli is critical for effective predation by Bdellovibrio. Microbiol. Spectr. 10, e03094–22 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dueholm, M. S., Albertsen, M., Otzen, D. & Nielsen, P. H. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS ONE 7, e51274 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. R. et al. The production of curli amyloid fibers is deeply integrated into the biology of Escherichia coli. Biomolecules 7, 75 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawaya, M. R., Hughes, M. P., Rodriguez, J. A., Riek, R. & Eisenberg, D. S. The expanding amyloid family: structure, stability, function, and pathogenesis. Cell 184, 4857–4873 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsén, A., Jonsson, A. & Normark, S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tursi, S. A. & Tükel, Ç. Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/mmbr.00028-18 (2018).

  • Maury, C. P. J. The emerging concept of functional amyloid. J. Intern. Med. 265, 329–334 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, M. L. et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57, 445–455 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gualdi, L. et al. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154, 2017–2024 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, Z. & Normark, S. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J. 16, 5827–5836 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnqvist, A., Olsén, A. & Normark, S. σS-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by σ70 in the absence of the nucleoid-associated protein H-NS. Mol. Microbiol. 13, 1021–1032 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, H., Pesavento, C., Possling, A., Tischendorf, G. & Hengge, R. Cyclic-di-GMP-mediated signalling within the σS network of Escherichia coli. Mol. Microbiol. 62, 1014–1034 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pesavento, C. et al. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev. 22, 2434–2446 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindenberg, S., Klauck, G., Pesavento, C., Klauck, E. & Hengge, R. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J. 32, 2001–2014 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, I., Cimdins, A., Beske, T. & Römling, U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol. 17, 27 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serra, D. O. & Hengge, R. A c-di-GMP-based switch controls local heterogeneity of extracellular matrix synthesis which is crucial for integrity and morphogenesis of Escherichia coli macrocolony biofilms. J. Mol. Biol. 431, 4775–4793 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, Z., Brauner, A., Li, Y. & Normark, S. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J. Infect. Dis. 181, 602–612 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichhardt, C. et al. Congo Red interactions with curli-producing E. coli and native curli amyloid fibers. PLoS ONE 10, e0140388 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serra, D. O. & Hengge, R. in c-di-GMP Signaling (ed. Sauer, K.) Vol. 1657, 133–145 (Springer, 2017).

  • Lamprecht, O. et al. Regulation by cyclic di-GMP attenuates dynamics and enhances robustness of bimodal curli gene activation in Escherichia coli. PLoS Genet. 19, e1010750 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Contreras-Moreno, F. J., Pérez, J., Muñoz-Dorado, J., Moraleda-Muñoz, A. & Marcos-Torres, F. J. Myxococcus xanthus predation: an updated overview. Front. Microbiol. 15, 1339696 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePas, W. H. et al. Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus. Appl. Environ. Microbiol. 80, 7079–7087 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bond, M. C., Vidakovic, L., Singh, P. K., Drescher, K. & Nadell, C. D. Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. eLife 10, e65355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. Curr. Opin. Struct. Biol. 60, 7–16 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammer, N. D., Schmidt, J. C. & Chapman, M. R. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc. Natl Acad. Sci. USA 104, 12494–12499 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittmers, F., Needham, D. M., Hehenberger, E., Giovannoni, S. J. & Worden, A. Z. Genomes from uncultivated pelagiphages reveal multiple phylogenetic clades exhibiting extensive auxiliary metabolic genes and cross-family multigene transfers. mSystems 7, e0152221 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rouse, S. L., Matthews, S. J. & Dueholm, M. S. Ecology and biogenesis of functional amyloids in Pseudomonas. J. Mol. Biol. 430, 3685–3695 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aravind, L., Iyer, L. M. & Burroughs, A. M. Discovering biological conflict systems through genome analysis: evolutionary principles and biochemical novelty. Annu. Rev. Biomed. Data Sci. 5, 367–391 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacLellan, S. R., Wecke, T. & Helmann, J. D. A previously unidentified sigma factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis. Mol. Microbiol. 69, 954–967 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, D. K. V. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 8, 340ra72 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ledvina, H. E. et al. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. Nature 616, 319–325 (2023).

  • Kibby, E. M. et al. Bacterial NLR-related proteins protect against phage. Cell https://doi.org/10.1016/j.cell.2023.04.015 (2023).

  • Boyd, E. F., Hill, C. W., Rich, S. M. & Hartl, D. L. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 143, 1091–1100 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrières, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, P., Stopford, C. M., Svenson, A. G. & Rietsch, A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol. Microbiol. 75, 924–941 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1, 784–791 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeukens, J. et al. Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS ONE 9, e87611 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahme, L. G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cain, A. K. et al. Complete genome sequence of Pseudomonas aeruginosa reference strain PAK. Microbiol. Resour. Announc. 8, e00865–19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daligault, H. E. et al. Draft genome assembly of Klebsiella pneumoniae type strain ATCC 13883. Genome Announc. 2, e00939–14 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rendulic, S. et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689–692 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambert, C. & Sockett, R. E. Laboratory maintenance of Bdellovibrio. Curr. Protoc. Microbiol. 9, 7B.2.1–7B.2.13 (2008).

  • Hmelo, L. R. et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat. Protoc. 10, 1820–1841 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenton, A. K., El Mortaji, L., Lau, D. T. C., Rudner, D. Z. & Bernhardt, T. G. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat. Microbiol. 2, 16237 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296, 179–185 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cameron, D. E., Urbach, J. M. & Mekalanos, J. J. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc. Natl Acad. Sci. USA 105, 8736–8741 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zemansky, J. et al. Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J. Bacteriol. 191, 3950–3964 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y., Smith, D. R., Hufnagel, D. A. & Chapman, M. R. Experimental manipulation of the microbial functional amyloid called curli. Methods Mol. Biol. 966, 53–75 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

  • Matsui, Y. et al. Multilocus sequence typing of Escherichia coli isolates from urinary tract infection patients and from fecal samples of healthy subjects in a college community. MicrobiologyOpen 9, e1032 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, B. G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30, 1229–1235 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 52, D33–D43 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wootton, J. C. & Federhen, S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 266, 554–571 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabler, F. et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinform. 72, e108 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Deorowicz, S., Debudaj-Grabysz, A. & Gudyś, A. FAMSA: fast and accurate multiple sequence alignment of huge protein families. Sci. Rep. 6, 33964 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuff, J. A. & Barton, G. J. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502–511 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravi, J. et al. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 9, e0084723 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kaur, G., Burroughs, A. M., Iyer, L. M. & Aravind, L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 9, e52696 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dueholm, M. S. et al. Functional amyloid in Pseudomonas. Mol. Microbiol. 77, 1009–1020 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    The Promise and Peril of Digital Security in the Age of Dictatorship

    Rodríguez and his collective received digital security training from Amate, another LGBTIQ+ organization that advocates nationally. Since May,...

    Despite Protests, Elon Musk Secures Air Permit for xAI

    A local health department in Memphis has granted Elon Musk’s xAI data center an air permit to continue...

    Wonder Dynamics co-founder Nikola Todorovic joins Disrupt 2025

    Tech Zone Daily Disrupt 2025 is back at Moscone West in San Francisco this October 27–29, bringing together...

    Robinhood’s co-founder is beaming up (and down) the future of energy

    Robinhood’s Baiju Bhatt has a new mission: solar power from space. Fresh off a $50 million Series A raise,...

    Learn a founder-focused approach to anxiety at TC All Stage

    Startups demand constant decision-making and pressure-filled pivots, which bring big emotional swings. It’s no wonder anxiety shows up...

    Must read

    You might also likeRELATED
    Recommended to you