Heat-rechargeable computation in DNA logic circuits and neural networks – Nature

-


  • Yurke, B., Turberfield, A. J., Mills Jr, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Simmel, F. C. DNA nanotechnology out of equilibrium. in Visions of DNA Nanotechnology at 40 for the Next 40: A Tribute to Nadrian C. Seeman (eds Jonoska, N. & Winfree, E.) 17–29 (Springer, 2023).


    Google Scholar
     

  • Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bois, J. S. Analysis of Interacting Nucleic Acids in Dilute Solutions (California Institute of Technology, 2006).


    Google Scholar
     

  • Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffter, S. W. et al. Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks. Nat. Chem. 14, 1224–1232 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okumura, S. et al. Nonlinear decision-making with enzymatic neural networks. Nature 610, 496–501 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Montagne, K., Gines, G., Fujii, T. & Rondelez, Y. Boosting functionality of synthetic DNA circuits with tailored deactivation. Nat. Commun. 7, 13474 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, Z. B., Tsai, T. L., Nguyen, N., Chen, X. & Ellington, A. D. Modelling amorphous computations with transcription networks. J. R. Soc. Interface 6, S523–S533 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Y. & Winfree, E. Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Res. 38, 4182–4197 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv, H. et al. DNA-based programmable gate arrays for general-purpose DNA computing. Nature 622, 292–300 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cherry, K. M. & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559, 370–376 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, X. et al. Molecular convolutional neural networks with DNA regulatory circuits. Nat. Mach. Intell. 4, 625–635 (2022).

    Article 

    Google Scholar
     

  • Genot, A. J., Bath, J. & Turberfield, A. J. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133, 20080–20083 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B., Chalk, C., Doty, D. & Soloveichik, D. Molecular computation at equilibrium via programmable entropy. Preprint at bioRxiv 10.1101/2024.09.13.612990v1 (2024).

  • Vasić, M., Soloveichik, D. & Khurshid, S. CRN++: molecular programming language. Nat. Comput. 19, 391–407 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lakin, M. R. & Stefanovic, D. Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5, 885–897 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DelRosso, N. V., Hews, S., Spector, L. & Derr, N. D. A molecular circuit regenerator to implement iterative strand displacement operations. Angew. Chem. Int. Ed. Engl. 56, 4443–4446 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalise, D., Dutta, N. & Schulman, R. DNA strand buffers. J. Am. Chem. Soc. 140, 12069–12076 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garg, S. et al. Renewable time-responsive DNA circuits. Small 14, 1801470 (2018).

    Article 

    Google Scholar
     

  • Eshra, A., Shah, S., Song, T. & Reif, J. Renewable DNA hairpin-based logic circuits. IEEE Trans. Nanotechnol. 18, 252–259 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hahn, J. & Shih, W. M. Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Res. 47, 10968–10975 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakin, M. R., Youssef, S., Cardelli, L. & Phillips, A. Abstractions for DNA circuit design. J. R. Soc. Interface 9, 470–486 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lauback, S. et al. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nat. Commun. 9, 1446 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, X., Nishioka, H., Takenaka, N. & Asanuma, H. A DNA nanomachine powered by light irradiation. ChemBioChem 9, 702–705 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, X., Eshra, A., Dwyer, C. & Reif, J. Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement. RSC Adv. 7, 28130–28144 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doty, D., Rogers, T. A., Soloveichik, D., Thachuk, C. & Woods, D. Thermodynamic binding networks. In Proc. DNA Computing and Molecular Programming: 23rd International Conference (eds Brijder, R., Qian, L.) 249–266 (Springer, 2017).

  • Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takinoue, M. & Suyama, A. Hairpin-DNA memory using molecular addressing. Small 2, 1244–1247 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viasnoff, V., Meller, A. & Isambert, H. DNA nanomechanical switches under folding kinetics control. Nano Lett. 6, 101–104 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Machinek, R. R., Ouldridge, T. E., Haley, N. E., Bath, J. & Turberfield, A. J. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haley, N. E. et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat. Commun. 11, 2562 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H.-L., Doty, D., Reeves, W. & Soloveichik, D. Rate-independent computation in continuous chemical reaction networks. J. ACM 70, 1–61 (2023).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Kim, J., Hopfield, J. & Winfree, E. Neural network computation by in vitro transcriptional circuits. In Advances in Neural Information Processing Systems 17 (NIPS 2004) (eds Saul, L. K., et al.) 681–688 (MIT Press, 2004).

  • Genot, A. J., Fujii, T. & Rondelez, Y. Scaling down DNA circuits with competitive neural networks. J. R. Soc. Interface 10, 20130212 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Y. Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc. 133, 1077–1086 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lothaire, M. Algebraic Combinatorics on Words, Vol. 90 (Cambridge Univ. Press, 2002).

    Book 
    MATH 

    Google Scholar
     

  • Yin, P., Choi, H. M., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Briggs, N., McLain, J. R. & Ellington, A. D. Stacking nonenzymatic circuits for high signal gain. Proc. Natl Acad. Sci. USA 110, 5386–5391 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kishi, J. Y., Schaus, T. E., Gopalkrishnan, N., Xuan, F. & Yin, P. Programmable autonomous synthesis of single-stranded DNA. Nat. Chem. 10, 155–164 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 14, 1075–1081 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thubagere, A. J. et al. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8, 14373 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouldridge, T. E., Šulc, P., Romano, F., Doye, J. P. & Louis, A. A. DNA hybridization kinetics: zippering, internal displacement and sequence dependence. Nucleic Acids Res. 41, 8886–8895 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivas, N. et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • SantaLucia Jr, J., & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    How startups could be affected by a prolonged government shutdown

    The U.S. government shutdown could stifle deal flow, freeze visa processing for workers, and cause other problems for...

    Celebrating the partners driving Disrupt’s big ideas, connections, and community

    Tech Zone Daily Disrupt 2025 wouldn’t be possible without the incredible support of our sponsors, who bring world-class...

    Phia’s Phoebe Gates and Sophia Kianni talk consumer AI at Disrupt 2025

    Consumer AI is having its breakout moment — and few startups have captured the spotlight this year quite...

    China Rolls Out Its First Talent Visa as the US Retreats on H-1Bs

    The bottom line is that, unlike the US, China is not a country of immigrants. In 2020, only...

    Tech Zone Daily Disrupt 2025 Bundle Sale Ends Tomorrow

    Ticktock! The Founder and Investor Bundle sale for Tech Zone Daily Disrupt 2025 ends tomorrow, October 3, at...

    Perplexity acquires the team behind Sequioa-backed AI design startup Visual Electric

    Sequoia-backed AI design startup Visual Electric said that it is joining search startup Perplexity today. The company noted...

    Must read

    You might also likeRELATED
    Recommended to you