How the Human Brain Is Inspiring AI Systems to Be More Robust

-


In a pioneering effort, researchers have introduced a novel technique to enhance the resilience of artificial neural networks (ANNs) by incorporating random noise into their inner layers.

According to TechXplore, ANNs, similar to the structure of the human brain, are fundamental to various AI systems. However, like the human brain, ANNs can occasionally misinterpret inputs, potentially leading to critical errors in decision-making processes.

(Photo : Seanbatty from Pixabay)

Introducing Random Noise in Deeper Layers of Network

This novel approach, crafted by recent graduate Jumpei Ukita and Professor Kenichi Ohki from the Department of Physiology at the University of Tokyo Graduate School of Medicine, introduces random noise not only at the input layer but also in deeper layers of the network. 

This is a practice typically avoided due to concerns about its impact on normal functioning. However, the duo found that this noise actually heightened the network’s adaptability without compromising its regular performance.

The result was a marked reduction in susceptibility to simulated adversarial attacks, demonstrating the efficacy of their method. Ukita emphasizes that the ongoing arms race between attackers and defenders in the realm of AI systems necessitates continuous innovation to safeguard the systems that are integral to our daily lives. 

This research signifies a significant leap forward in fortifying the reliability and security of artificial neural networks. Artificial intelligence has permeated various aspects of modern life, from voice assistants on smartphones to search engines powered by intricate AI algorithms. 

These systems are predominantly constructed using ANNs, which are modeled after the structure of the human brain. While they can process immense amounts of data and make decisions, they can sometimes be confounded, either accidentally or by the deliberate actions of external entities.

Read Also: British Judge Uses ChatGPT to Write Ruling, Hails AI’s Vast Potential

Arms Race Between Attackers and Defenders

Unlike human perception, an ANN might interpret seemingly ordinary visual inputs in entirely different ways. For instance, a medical diagnostic system could erroneously identify a healthy condition as a medical issue. 

Such discrepancies pose significant challenges, especially in autonomous vehicles and medical diagnostics applications. While defenses against such attacks exist, they have their limitations.

Hence, this is the reason why the new approach was devised. They drew inspiration from their background in studying the human brain. 

“These attacks work by supplying an input intentionally far from, rather than near to, the input that an ANN can correctly classify. But the trick is to present subtly misleading artifacts to the deeper layers instead,” Ukita said in a press statement.

“Once we demonstrated the danger from such an attack, we injected random noise into the deeper hidden layers of the network to boost their adaptability and therefore defensive capability. We are happy to report it works,” Ukita added.

The researchers observed a reduction in susceptibility to simulated adversarial attacks, showcasing the efficacy of their method. However, they acknowledge the need for further development to make it more robust against a wider range of attacks.

Ukita emphasizes the ongoing arms race between attackers and defenders of AI systems. He underscores the necessity for continuous innovation to safeguard the systems integral to our daily lives. 

This research marks a significant stride in fortifying the reliability and security of artificial neural networks. The findings of the team were published in the journal Neural Networks. 

Related Article: MIT Researchers Develop New AI Tool to Customize 3D-Printable Models With Ease

Byline

ⓒ 2023 TECHTIMES.com All rights reserved. Do not reproduce without permission.





Source link

Latest news

India, the market BlaBlaCar once walked away from, is now its biggest

Every few weekends, 21-year-old student Lavanya Jain opens the BlaBlaCar app to find a lift from Noida on...

Thinking About a Pair of Open Earbuds? The Baseus Inspire XC1 Might Be for You

Speaking of critical listening, the XC1 work with Sony’s hi-res capable LDAC Bluetooth codec, should you happen to...

Gear News of the Week: There’s Yet Another New AI Browser, and Fujifilm Debuts the X-T30 III

An increasingly popular solution is the inclusion of a solar panel to keep that battery topped up, enabling...

Amazon Explains How Its AWS Outage Took Down the Web

The cloud giant Amazon Web Services experienced DNS resolution issues on Monday leading to cascading outages that took...

Don’t Let the Fuzzy Rats Win: Tips from a Squirrel Hater Who’s Seen It All

Squirrels: Are they just rats with better PR? Be advised that this is not safe reading material for...

OpenAI’s Atlas Wants to Be the Web’s Tour Guide. I’m Not Convinced It Needs One

The oddest, and most memorable, interaction I had with ChatGPT Atlas occurred as I scrolled around on Bluesky...

Must read

You might also likeRELATED
Recommended to you