Hydrogen-bond-acceptor ligands enable distal C(sp3)–H arylation of free alcohols – Nature

-


  • Chen, Z. et al. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2, 1107–1295 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uttry, A. & van Gemmeren, M. Direct C(sp3)–H activation of carboxylic acids. Synthesis 52, 479–488 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Higham, J. I. & Bull, J. A. Transient imine directing groups for the C–H functionalisation of aldehydes, ketones and amines: an update 2018–2020. Org. Biomol. Chem. 18, 7291–7315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ertl, P. & Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258–1263 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo, F., Tabor, J. R. & Dong, G. Alcohols or masked alcohols as directing groups for C–H bond functionalization. Chem. Lett. 43, 264–271 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Vicente, J. & Arcas, A. Aqua palladium complexes: synthesis, properties and applications. Coord. Chem. Rev. 249, 1135–1154 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kuninobu, Y., Ida, H., Nishi, M. & Kanai, M. A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem. 7, 712–717 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoque, M. E., Bisht, R., Haldar, C. & Chattopadhyay, B. Noncovalent interactions in Ir-catalyzed C–H activation: L-shaped ligand for para-selective borylation of aromatic esters. J. Am. Chem. Soc. 139, 7745–7748 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genov, G. R., Douthwaite, J. L., Lahdenperä, A. S. K., Gibson, D. C. & Phipps, R. J. Enantioselective remote C–H activation directed by a chiral cation. Science 367, 1246–1251 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G., Yan, Y., Zhang, P., Xu, X. & Jin, Z. Palladium-catalyzed meta-selective C–H functionalization by noncovalent H-bonding interaction. ACS Catal. 11, 10460–10466 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Goswami, N. et al. Distal meta-alkenylation of formal amines enabled by catalytic use of hydrogen-bonding anionic ligands. Chem 9, 989–1003 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mondal, A., Díaz-Ruiz, M., Deufel, F., Maseras, F. & van Gemmeren, M. Charge-controlled Pd catalysis enables the meta-C–H activation and olefination of arenes. Chem 9, 1004–1016 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C–H activation as strategic and tactical disconnections for C–C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: The discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, E. L. et al. Palladium-catalyzed enantioselective β-C(sp3)–H activation reactions of aliphatic acids: A retrosynthetic surrogate for enolate alkylation and conjugate addition. Acc. Chem. Res. 55, 537–550 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, H., Chekshin, N., Shen, P.-X. & Yu, J.-Q. Ligand-enabled, palladium-catalyzed β-C(sp3)–H arylation of Weinreb amides. ACS Catal. 8, 9292–9297 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoveyda, A. H., Evans, D. A. & Fu, G. C. Substrate-directable chemical reactions. Chem. Rev. 93, 1307–1370 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Terao, Y., Wakui, H., Satoh, T., Miura, M. & Nomura, M. Palladium-catalyzed arylative carbon–carbon bond cleavage of α,α-disubstituted arylmethanols. J. Am. Chem. Soc. 123, 10407–10408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terao, Y. et al. Palladium-catalyzed arylation of α,α-disubstituted arylmethanols via cleavage of a C–C or a C–H bond to give biaryls. J. Org. Chem. 68, 5236–5243 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Wang, D.-H., Engle, K. M. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H olefination enabled by monoprotected amino acid ligands. J. Am. Chem. Soc. 132, 5916–5921 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X., Lu, Y., Dai, H.-X. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H activation/C–O cyclization: Expedient construction of dihydrobenzofurans. J. Am. Chem. Soc. 132, 12203–12205 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Leow, D., Wang, X., Engle, K. M. & Yu, J.-Q. Hydroxyl-directed C–H carbonylation enabled by mono-N-protected amino acid ligands: an expedient route to 1-isochromanones. Chem. Sci. 2, 967–971 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Z.-K., Xu, Y.-H. & Loh, T.-P. Palladium-catalyzed cross-coupling of unactivated alkenes with acrylates: Application to the synthesis of the C13–C21 fragment of Palmerolide A. Chem. Eur. J. 42, 13284–13287 (2012).

    Article 

    Google Scholar
     

  • Kandukuri, S. R., Jiao, L.-Y., Machotta, A. B. & Oestreich, M. Diastereotopic group selection in hydroxy-directed intramolecular C–H alkenylation of indole under oxidative palladium(II) catalysis. Adv. Synth. Catal. 356, 1597–1609 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Q.-J. et al. Chelation versus non-chelation control in the stereoselective alkenyl sp2 C–H bond functionalization reaction. Angew. Chem. Int. Ed. 56, 5091–5095 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, L., Liu, Q., Chen, J. & Huang, Y. Alcohol-directed ortho-C–H alkenylation. Synlett 30, 1366–1370 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meng, K. et al. Geminal group-directed olefinic C–H functionalization via four- to eight-membered exo-metallocycles. Nat. Commun. 10, 5109 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghiringhelli, F., Uttry, A., Ghosh, K. K. & van Gemmeren, M. Direct β- and γ-C(sp3)–H alkynylation of free carboxylic acids. Angew. Chem. Int. Ed. 59, 23127–23131 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bryndza, H. E. & Tam, W. Monomeric metal hydroxides, alkoxides, and amides of the late transition metals: Synthesis, reactions, and thermochemistry. Chem. Rev. 88, 1163–1188 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Rivas, C. et al. Synthesis and structure of new oxapalladacycles with a Pd–O bond. Organometallics 20, 2998–3006 (2001).

    Article 

    Google Scholar
     

  • Sigman, M. S. & Schultz, M. J. The renaissance of palladium(II)-catalyzed oxidation chemistry. Org. Biomol. Chem. 2, 2551–2554 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, G. et al. Reversing conventional site-selectivity in C(sp3)–H bond activation. Nat. Chem. 11, 571–577 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanka, K., Ewing, W. R. & Yu, J.-Q. Hemilabile benzyl ether enables γ-C(sp3)–H carbonylation and olefination of alcohols. J. Am. Chem. Soc. 2019, 15494–15497 (2019).

    Article 

    Google Scholar
     

  • Xia, G. et al. Ligand-enabled β-methylene C(sp3)–H arylation of masked aliphatic alcohols. Angew. Chem., Int. Ed. 59, 7783–7787 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Salamanca, V., Toledo, A. & Albéniz, A. C. [2,2’-Bipyridin]-6(1H)-one, a truly cooperating ligand in the palladium-mediated C–H activation step: experimental evidence in the direct C-3 arylation of pyridine. J. Am. Chem. Soc. 140, 17851–17856 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. A tautomeric ligand enables directed C–H hydroxylation with molecular oxygen. Science 372, 1452–1457 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Park, H. S., Qiao, J. X., Yeung, K.-S. & Yu, J.-Q. Ligand-enabled C–H hydroxylation with aqueous H2O2 at room temperature. J. Am. Chem. Soc. 144, 18109–18116 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saint-Denis, T. G. et al. Mechanistic study of enantioselective Pd-catalyzed C(sp3)–H activation of thioethers involving two distinct stereomodels. ACS Catal. 11, 9738–9753 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drover, M. W. A guide to secondary coordination sphere editing. Chem. Soc. Rev. 51, 1861–1880 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wimmer, F. L., Wimmer, S., Afcharian, A., Castan, P. & Fabre, P. L. Acid dissociation and dimerization constants of some cis-diaqua complexes of palladium(II) with chelating N, N’ and N, C’ ligands. J. Chem. Res. Synop. 194–195 (1999).

  • Alsters, P. L., Boersma, J., Smeets, W. J. J., Spek, A. L. & van Koten, G. Arylpalladium compounds containing an alcohol functionality: Hindered rotation around the Pd–C bond and reactivity toward styrene and carbon monoxide. Comments on carbon–oxygen bond shortening in late-transition-metal alkoxides. Organometallics 12, 1639–1647 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Jie, S., Ai, P., Zhou, Q. & Li, B.-G. Nickel and cationic palladium complexes bearing (imino)pyridyl alcohol ligands: Synthesis, characterization and vinyl polymerization of norbornene. J. Organomet. Chem. 696, 1465–1473 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Reek, J. N. H. et al. Transition metal catalysis controlled by hydrogen bonding in the second coordination sphere. Chem. Rev. 122, 12308–12369 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farizyan, M., Mondal, A., Mal, S., Deufel, F. & van Gemmeren, M. Palladium-catalyzed nondirected late-stage C–H deuteration of arenes. J. Am. Chem. Soc. 143, 16370–16373 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Kolk, M. R., Janssen, M. A. C. H., Rutjes, F. P. J. T. & Blanco-Ania, D. Cyclobutanes in small-molecule drug candidates. ChemMedChem 17, e202200020 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science 374, 1281–1285 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cockroft, S. L. & Hunter, C. A. Chemical double-mutant cycles: dissecting non-covalent interactions. Chem. Soc. Rev. 36, 172–188 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brazzolotto, D., Bogart, J. A., Ross, D. L., Ziller, J. W. & Borovik, A. S. Stabilizing a NiII-aqua complex via intramolecular hydrogen bonds: synthesis, structure, and redox properties. Inorg. Chim. Acta 495, 118960 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, H. J. & Phipps, R. J. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem. Sci. 8, 864–877 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, J., Mercado, B. O. & Miller, S. J. Chirality-matched catalyst-controlled macrocyclization reactions. Proc. Natl Acad. Sci. USA 118, e2113122118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Latest news

    Figma moves closer to a blockbuster IPO that could raise $1.5B

    Figma publicly shared its financials Tuesday, inching the design software company closer to an IPO. And while this...

    Road to Battlefield: Central Eurasia’s Gateway to Tech Zone Daily Startup Battlefield

    Historic regional competition launches to showcase Central Eurasia’s rising startup ecosystem on Silicon Valley’s biggest stage. For the first...

    A Pro-Russia Disinformation Campaign Is Using Free AI Tools to Fuel a ‘Content Explosion’

    A pro-Russia disinformation campaign is leveraging consumer artificial intelligence tools to fuel a “content explosion” focused on exacerbating...

    Kleida Martiro is leading the AI scale conversation at TC All Stage

    AI-native startups are rewriting the rules of what early traction looks like — and too often, investors are...

    Here’s What Mark Zuckerberg Is Offering Top AI Talent

    As Mark Zuckerberg staffs up Meta’s new superintelligence lab, he’s offered top tier research talent pay packages of...

    Must read

    You might also likeRELATED
    Recommended to you