Imaging tunable Luttinger liquid systems in van der Waals heterostructures – Nature

    0
    Imaging tunable Luttinger liquid systems in van der Waals heterostructures – Nature


  • Imambekov, A., Schmidt, T. L. & Glazman, L. I. One-dimensional quantum liquids: beyond the Luttinger liquid paradigm. Rev. Mod. Phys. 84, 1253–1306 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys. 14, 2585–2610 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baym, G. & Pethick, C. Landau Fermi-Liquid Theory: Concepts and Applications (Wiley, 2008).

  • Nozieres, P. Theory of Interacting Fermi Systems (CRC Press, 2018).

  • Fiete, G. A., Le Hur, K. & Balents, L. Coulomb drag between two spin-incoherent Luttinger liquids. Phys. Rev. B 73, 165104 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Fiete, G. A. Colloquium: the spin-incoherent Luttinger liquid. Rev. Mod. Phys. 79, 801–820 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Moskovtsev, K. & Dykman, M. Mobility of a spatially modulated electron liquid on the helium surface. Phys. Rev. B 101, 245435 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reichhardt, C. & Reichhardt, C. J. O. Collective dynamics and defect generation for Wigner crystal ratchets. Phys. Rev. B 108, 155131 (2023)

  • Teo, J. C. Y. & Kane, C. L. From Luttinger liquid to non-Abelian quantum Hall states. Phys. Rev. B 89, 085101 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mukhopadhyay, R., Kane, C. L. & Lubensky, T. C. Sliding Luttinger liquid phases. Phys. Rev. B 64, 045120 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Ohtsubo, Y. et al. Surface Tomonaga-Luttinger-liquid state on Bi/InSb(001). Phys. Rev. Lett. 115, 256404 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597–601 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shapir, I. et al. Imaging the electronic Wigner crystal in one dimension. Science 364, 870–875 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Real space imaging of one-dimensional standing waves: direct evidence for a Luttinger liquid. Phys. Rev. Lett. 93, 166403 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chang, A. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wen, X.-G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).

    Article 

    Google Scholar
     

  • Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhu, T. et al. Imaging gate-tunable Tomonaga–Luttinger liquids in 1H-MoSe2 mirror twin boundaries. Nat. Mater. 21, 748–753 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jolie, W. et al. Tomonaga-Luttinger liquid in a box: electrons confined within MoS2 mirror-twin boundaries. Phys. Rev. X 9, 011055 (2019).

    CAS 

    Google Scholar
     

  • Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 4, 314–318 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Emery, V. J., Kivelson, S. A. & Zachar, O. Spin-gap proximity effect mechanism of high-temperature superconductivity. Phys. Rev. B 56, 6120–6147 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schweizer, P., Dolle, C. & Spiecker, E. In situ manipulation and switching of dislocations in bilayer graphene. Sci. Adv. 4, eaat4712 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupp, A. et al. Imaging lattice reconstruction in homobilayers and heterobilayers of transition metal dichalcogenides. 2D Mater. 10, 045028 (2023).

  • Kim, J. H. et al. Interface‐driven partial dislocation formation in 2D heterostructures. Adv. Mater. 31, 1807486 (2019).

    Article 

    Google Scholar
     

  • Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Wigner molecular crystals from multi-electron moiré artificial atoms. Preprint at arxiv.org/abs/2312.07607 (2023).

  • Vu, D. & Sarma, S. D. One-dimensional few-electron effective Wigner crystal in quantum and classical regimes. Phys. Rev. B 101, 125113 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Drummond, N. & Needs, R. Phase diagram of the low-density two-dimensional homogeneous electron gas. Phys. Rev. Lett. 102, 126402 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceperley, D. Ground state of the fermion one-component plasma: a Monte Carlo study in two and three dimensions. Phys. Rev. B 18, 3126–3138 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005–5016 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Piro, O. E., Echeverría, G. A. & Cukiernik, F. D. Crystallography and the liquid crystal phase: a new approach to structural studies on a thermo-tropic smectic Schiff base. Crystallogr. Rev. 24, 3–21 (2018).

    Article 

    Google Scholar
     

  • de Vries, A. A structural classification of smectic liquid crystals. Mol. Cryst. Liq. Cryst. 63, 215–229 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Farahi, G. et al. Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels. Nat. Phys. 19, 1482–1488 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bray, J. W. et al. Observation of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Phys. Rev. Lett. 35, 744–747 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cross, M. C. & Fisher, D. S. A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDT. Phys. Rev. B 19, 402–419 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link