Indistinguishable telecom band photons from a single Er ion in the solid state – Nature

-


  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simon, C. et al. Quantum memories. Eur. Phys. J. D. 58, 1–22 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with stable transition frequency. Sci. Adv. 8, eabo4538 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Wang, S., Shen, M., Xie, J. & Tang, H. X. Controlling single rare earth ion emission in an electro-optical nanocavity. Nat. Commun. 14, 1718 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeDantec, M. et al. Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article 

    Google Scholar
     

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers. PRX Quantum 3, 020359 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Craiciu, I. et al. Nanophotonic quantum storage at telecommunication wavelength. Phys. Rev. Appl. 12, 024062 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Businger, M. et al. Non-classical correlations over 1,250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5. Nat. Commun. 13, 6438 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Article 

    Google Scholar
     

  • Böttger, T., Thiel, C. W., Cone, R. L. & Sun, Y. Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5. Phys. Rev. B 79, 115104 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kindem, J. M. et al. Characterization of 171Yb3+:YVO4 for photonic quantum technologies. Phys. Rev. B 98, 024404 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uysal, M. T. et al. Coherent control of a nuclear spin via interactions with a rare-earth ion in the solid state. PRX Quantum 4, 010323 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Thiel, C. W., Böttger, T. & Cone, R. L. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131, 353–361 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, T. & Goldner, P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8, 2003–2015 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Phenicie, C. M. et al. Narrow optical line widths in erbium implanted in TiO2. Nano Lett. 19, 8928–8933 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevenson, P. et al. Erbium-implanted materials for quantum communication applications. Phys. Rev. B 105, 224106 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferrenti, A. M., de Leon, N. P., Thompson, J. D. & Cava, R. J. Identifying candidate hosts for quantum defects via data mining. npj Computat. Mater. 6, 126 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Nassau, K. & Loiacono, G. Calcium tungstate-III: Trivalent rare earth ion substitution. J. Phys. Chem. Solids 24, 1503–1510 (1963).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Enrique, B. G. Optical spectrum and magnetic properties of Er3+ in CaWO4. J. Chem. Phys. 55, 2538–2549 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Y., Thiel, C., Cone, R., Equall, R. & Hutcheson, R. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Hybrid microwave-optical scanning probe for addressing solid-state spins in nanophotonic cavities. Optics Expr. 29, 4902 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, T.-M. et al. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 103602 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Asano, T., Ochi, Y., Takahashi, Y., Kishimoto, K. & Noda, S. Photonic crystal nanocavity with a Q factor exceeding eleven million. Optics Express 25, 1769 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. B. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Single electron-spin-resonance detection by microwave photon counting. Preprint at https://arxiv.org/abs/2301.02653 (2023).

  • Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B. Beam Interact. Mater. Atoms 268, 1818–1823 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carnall, W. T., Goodman, G. L., Rajnak, K. & Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443–3457 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wybourne, B. G. Spectroscopic Properties of Rare Earths (Interscience Publishers, 1965).

  • Newman, D. Theory of lanthanide crystal fields. Adv. Phys. 20, 197–256 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Messiah, A. Quantum Mechanics (Dover Publications, 1961).

  • Suter, D. & Álvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 20, 115003 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (OUP, 1970).

  • Yang, W. & Liu, R.-B. Quantum many-body theory of qubit decoherence in a finite-size spin bath. ii. ensemble dynamics. Phys. Rev. B 79, 115320 (2009).

    Article 
    ADS 

    Google Scholar
     

  • de Wit, M., Welker, G., de Voogd, J. & Oosterkamp, T. Density and T 1 of surface and bulk spins in diamond in high magnetic field gradients. Phys. Rev. Appl. 10, 064045 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, B. L. et al. Probing spin dynamics on diamond surfaces using a single quantum sensor. PRX Quantum 3, 040328 (2022).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Latest news

    MacroCycle found a shortcut for plastic recycling — catch it at Tech Zone Daily Disrupt 2025

    Plastic recycling has fallen short. Only about 9% of all plastic is recycled globally, which sounds pretty bad...

    Strong by Form will show its ultralight engineered wood at Tech Zone Daily Disrupt 2025

    Even before a building accepts its first occupant, it has racked up a steep carbon debt. Worldwide, the...

    This Gas Pizza Oven Was My Favorite of the Summer. It’s Half Off Today

    Cookware brand All-Clad surprised me this year. This summer, it breezed into the backyard pizza world with a...

    All-Clad Cookware Is Expensive, but This Limited-Time Sale Makes It Way More Affordable

    All-Clad deals are hard to find, but the cookware lasts for years and years. Using bad cookware can...

    Man Has Pig Kidney Removed After Living With It for a Record 9 Months

    Surgeons at Massachusetts General Hospital have removed a genetically engineered pig kidney from a 67-year-old New Hampshire man...

    Oxford spinout RADiCAIT uses AI to make diagnostic imaging more affordable and accessible — catch it at Tech Zone Daily Disrupt 2025

    If you’ve ever had a PET scan, you know it’s an ordeal. The scans help doctors detect cancer...

    Must read

    You might also likeRELATED
    Recommended to you