Indistinguishable telecom band photons from a single Er ion in the solid state – Nature

-


  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simon, C. et al. Quantum memories. Eur. Phys. J. D. 58, 1–22 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with stable transition frequency. Sci. Adv. 8, eabo4538 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Wang, S., Shen, M., Xie, J. & Tang, H. X. Controlling single rare earth ion emission in an electro-optical nanocavity. Nat. Commun. 14, 1718 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeDantec, M. et al. Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article 

    Google Scholar
     

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers. PRX Quantum 3, 020359 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Craiciu, I. et al. Nanophotonic quantum storage at telecommunication wavelength. Phys. Rev. Appl. 12, 024062 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Businger, M. et al. Non-classical correlations over 1,250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5. Nat. Commun. 13, 6438 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Article 

    Google Scholar
     

  • Böttger, T., Thiel, C. W., Cone, R. L. & Sun, Y. Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5. Phys. Rev. B 79, 115104 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kindem, J. M. et al. Characterization of 171Yb3+:YVO4 for photonic quantum technologies. Phys. Rev. B 98, 024404 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uysal, M. T. et al. Coherent control of a nuclear spin via interactions with a rare-earth ion in the solid state. PRX Quantum 4, 010323 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Thiel, C. W., Böttger, T. & Cone, R. L. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131, 353–361 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, T. & Goldner, P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8, 2003–2015 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Phenicie, C. M. et al. Narrow optical line widths in erbium implanted in TiO2. Nano Lett. 19, 8928–8933 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevenson, P. et al. Erbium-implanted materials for quantum communication applications. Phys. Rev. B 105, 224106 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferrenti, A. M., de Leon, N. P., Thompson, J. D. & Cava, R. J. Identifying candidate hosts for quantum defects via data mining. npj Computat. Mater. 6, 126 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Nassau, K. & Loiacono, G. Calcium tungstate-III: Trivalent rare earth ion substitution. J. Phys. Chem. Solids 24, 1503–1510 (1963).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Enrique, B. G. Optical spectrum and magnetic properties of Er3+ in CaWO4. J. Chem. Phys. 55, 2538–2549 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Y., Thiel, C., Cone, R., Equall, R. & Hutcheson, R. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Hybrid microwave-optical scanning probe for addressing solid-state spins in nanophotonic cavities. Optics Expr. 29, 4902 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, T.-M. et al. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 103602 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Asano, T., Ochi, Y., Takahashi, Y., Kishimoto, K. & Noda, S. Photonic crystal nanocavity with a Q factor exceeding eleven million. Optics Express 25, 1769 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. B. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Single electron-spin-resonance detection by microwave photon counting. Preprint at https://arxiv.org/abs/2301.02653 (2023).

  • Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B. Beam Interact. Mater. Atoms 268, 1818–1823 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carnall, W. T., Goodman, G. L., Rajnak, K. & Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443–3457 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wybourne, B. G. Spectroscopic Properties of Rare Earths (Interscience Publishers, 1965).

  • Newman, D. Theory of lanthanide crystal fields. Adv. Phys. 20, 197–256 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Messiah, A. Quantum Mechanics (Dover Publications, 1961).

  • Suter, D. & Álvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 20, 115003 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (OUP, 1970).

  • Yang, W. & Liu, R.-B. Quantum many-body theory of qubit decoherence in a finite-size spin bath. ii. ensemble dynamics. Phys. Rev. B 79, 115320 (2009).

    Article 
    ADS 

    Google Scholar
     

  • de Wit, M., Welker, G., de Voogd, J. & Oosterkamp, T. Density and T 1 of surface and bulk spins in diamond in high magnetic field gradients. Phys. Rev. Appl. 10, 064045 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, B. L. et al. Probing spin dynamics on diamond surfaces using a single quantum sensor. PRX Quantum 3, 040328 (2022).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Latest news

    My Favorite All-in-One Printer and Scanner Is $50 Off

    While a printer upgrade might not sound like the most exciting way to spend your hard-earned dollars, the...

    Government Workers Say Their Out-of-Office Replies Were Forcibly Changed to Blame Democrats for Shutdown

    On Wednesday, the first day of the US government shutdown, employees at the Department of Education (DOE) set...

    How startups could be affected by a prolonged government shutdown

    The U.S. government shutdown could stifle deal flow, freeze visa processing for workers, and cause other problems for...

    Celebrating the partners driving Disrupt’s big ideas, connections, and community

    Tech Zone Daily Disrupt 2025 wouldn’t be possible without the incredible support of our sponsors, who bring world-class...

    Phia’s Phoebe Gates and Sophia Kianni talk consumer AI at Disrupt 2025

    Consumer AI is having its breakout moment — and few startups have captured the spotlight this year quite...

    Must read

    You might also likeRELATED
    Recommended to you