Light-driven nanoscale vectorial currents – Nature

-


  • Ma, Q., Kumar, R. K., Xu, S.-Y., Koppens, F. H. L. & Song, J. C. W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).

    Article 

    Google Scholar
     

  • Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pettine, J. et al. Ultrafast terahertz emission from emerging symmetry-broken materials. Light Sci. Appl. 12, 133 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takasan, K., Morimoto, T., Orenstein, J. & Moore, J. E. Current-induced second harmonic generation in inversion-symmetric Dirac and Weyl semimetals. Phys. Rev. B 104, L161202 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewski, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photon. 14, 680–685 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. X. et al. Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals. Nat. Phys. 19, 507–514 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, H. S. et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Petrov, N. V., Sokolenko, B., Kulya, M. S., Gorodetsky, A. & Chernykh, A. V. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light Adv. Manuf. 3, 640–652 (2022).


    Google Scholar
     

  • Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettine, J. & Nesbitt, D. J. Emerging methods for controlling hot carrier excitation and emission distributions in nanoplasmonic systems. J. Phys. Chem. C 126, 14767–14780 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehr, M. et al. Momentum distribution of electrons emitted from resonantly excited individual gold nanorods. Nano Lett. 17, 6606–6612 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettine, J., Choo, P., Medeghini, F., Odom, T. W. & Nesbitt, D. J. Plasmonic nanostar photocathodes for optically-controlled directional currents. Nat. Commun. 11, 1367 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J. X. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, L. F. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15, 743–749 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, P. F. & Wokaun, A. Lightning rod effect in surface enhanced Raman scattering. J. Chem. Phys. 76, 751–752 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buckley, D., Yang, Y., Yang-Keathley, Y., Berggren, K. K. & Keathley, P. D. Nanoantenna design for enhanced carrier–envelope-phase sensitivity. J. Opt. Soc. Am. B 38, C11–C21 (2021).

    Article 

    Google Scholar
     

  • Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C. H. et al. Ultrafast lateral photo-Dember effect in graphene induced by nonequilibrium hot carrier dynamics. Nano Lett. 15, 4234–4239 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshioka, K. et al. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat. Photon. 16, 718–723 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene–metal interfaces. J. Phys. Condens. Matter 27, 164207 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shautsova, V. et al. Plasmon induced thermoelectric effect in graphene. Nat. Commun. 9, 5190 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Block, A. et al. Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195–1200 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taghinejad, M. et al. Determining hot-carrier transport dynamics from terahertz emission. Science 382, 299–305 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jana, K. et al. Reconfigurable electronic circuits for magnetic fields controlled by structured light. Nat. Photon. 15, 622–627 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitoma, N., Nouchi, R. & Tanigaki, K. Photo-oxidation of graphene in the presence of water. J. Phys. Chem. C 117, 1453–1456 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kohlhaas, R. B. et al. Ultrabroadband terahertz time-domain spectroscopy using III–V photoconductive membranes on silicon. Opt. Express 30, 23896–23908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. C. W. & Levitov, L. S. Shockley-Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, Y.-C., Liu, C.-H., Liu, C.-H., Zhong, Z. H. & Norris, T. B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 104, 261909 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, H. G. et al. Time-resolved Raman spectroscopy of optical phonons in graphite: phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 80, 121403(R) (2009).

    Article 
    ADS 

    Google Scholar
     

  • Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    OpenAI just made its first cybersecurity investment 

    Generative AI has vastly expanded the toolkit available to hackers and other bad actors. It’s now possible to...

    Ted Schlein’s Ballistic Ventures is raising $100M for a new fund

    Ballistic Ventures, the VC firm co-founded by Ted Schlein (known for his years at Kleiner Perkins), is raising...

    Teen with 4.0 GPA who built the viral Cal AI app was rejected by 15 top universities

    Zach Yadegari, the high school teen co-founder of Cal AI, is being hammered with comments on X after...

    Thatch raises $40M to give employees more control of their health care choices

    Thatch, a startup that aims to transform the health insurance experience for employers and employees alike, has raised...

    Call for speakers: Showcase your knowledge at All Stage

    Calling founders, VCs, and startup experts — share your scaling strategies! Tech Zone Daily All Stage 2025 is assembling...

    Must read

    You might also likeRELATED
    Recommended to you