Light-driven nanoscale vectorial currents – Nature

    0
    1
    Light-driven nanoscale vectorial currents – Nature


  • Ma, Q., Kumar, R. K., Xu, S.-Y., Koppens, F. H. L. & Song, J. C. W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).

    Article 

    Google Scholar
     

  • Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pettine, J. et al. Ultrafast terahertz emission from emerging symmetry-broken materials. Light Sci. Appl. 12, 133 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takasan, K., Morimoto, T., Orenstein, J. & Moore, J. E. Current-induced second harmonic generation in inversion-symmetric Dirac and Weyl semimetals. Phys. Rev. B 104, L161202 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewski, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photon. 14, 680–685 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. X. et al. Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals. Nat. Phys. 19, 507–514 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, H. S. et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Petrov, N. V., Sokolenko, B., Kulya, M. S., Gorodetsky, A. & Chernykh, A. V. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light Adv. Manuf. 3, 640–652 (2022).


    Google Scholar
     

  • Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettine, J. & Nesbitt, D. J. Emerging methods for controlling hot carrier excitation and emission distributions in nanoplasmonic systems. J. Phys. Chem. C 126, 14767–14780 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehr, M. et al. Momentum distribution of electrons emitted from resonantly excited individual gold nanorods. Nano Lett. 17, 6606–6612 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettine, J., Choo, P., Medeghini, F., Odom, T. W. & Nesbitt, D. J. Plasmonic nanostar photocathodes for optically-controlled directional currents. Nat. Commun. 11, 1367 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J. X. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, L. F. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15, 743–749 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, P. F. & Wokaun, A. Lightning rod effect in surface enhanced Raman scattering. J. Chem. Phys. 76, 751–752 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buckley, D., Yang, Y., Yang-Keathley, Y., Berggren, K. K. & Keathley, P. D. Nanoantenna design for enhanced carrier–envelope-phase sensitivity. J. Opt. Soc. Am. B 38, C11–C21 (2021).

    Article 

    Google Scholar
     

  • Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C. H. et al. Ultrafast lateral photo-Dember effect in graphene induced by nonequilibrium hot carrier dynamics. Nano Lett. 15, 4234–4239 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshioka, K. et al. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat. Photon. 16, 718–723 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene–metal interfaces. J. Phys. Condens. Matter 27, 164207 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shautsova, V. et al. Plasmon induced thermoelectric effect in graphene. Nat. Commun. 9, 5190 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Block, A. et al. Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195–1200 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taghinejad, M. et al. Determining hot-carrier transport dynamics from terahertz emission. Science 382, 299–305 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jana, K. et al. Reconfigurable electronic circuits for magnetic fields controlled by structured light. Nat. Photon. 15, 622–627 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitoma, N., Nouchi, R. & Tanigaki, K. Photo-oxidation of graphene in the presence of water. J. Phys. Chem. C 117, 1453–1456 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kohlhaas, R. B. et al. Ultrabroadband terahertz time-domain spectroscopy using III–V photoconductive membranes on silicon. Opt. Express 30, 23896–23908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. C. W. & Levitov, L. S. Shockley-Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, Y.-C., Liu, C.-H., Liu, C.-H., Zhong, Z. H. & Norris, T. B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 104, 261909 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, H. G. et al. Time-resolved Raman spectroscopy of optical phonons in graphite: phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 80, 121403(R) (2009).

    Article 
    ADS 

    Google Scholar
     

  • Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link