Microbial iron limitation in the ocean’s twilight zone – Nature

    0
    Microbial iron limitation in the ocean’s twilight zone – Nature


  • Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buesseler, K. O. et al. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baltar, F. et al. Specific effects of trace metals on marine heterotrophic microbial activity and diversity: key role of iron and zinc and hydrocarbon-degrading bacteria. Front. Microbiol. 9, 03190 (2018).

    Article 

    Google Scholar
     

  • Bundy, R. M. et al. Distinct siderophores contribute to iron cycling in the mesopelagic at station ALOHA. Front. Mar. Sci. 5, 61 (2018).

    Article 

    Google Scholar
     

  • Mazzotta, M. G., McIlvin, M. R. & Saito, M. A. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics 12, 654–667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagg, A. & Neilands, J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51, 509–518 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Twining, B. S. et al. Differential remineralization of major and trace elements in sinking diatoms. Limnol. Oceanogr. 59, 689–704 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Acta 58, 3171–3182 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schlitzer, R. et al. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 493, 210–223 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tortell, P. D., Maldonado, M. T. & Price, N. M. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383, 330–332 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fourquez, M. et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol. Oceanogr. 59, 349–360 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van den Berg, C. M. Evidence for organic complexation of iron in seawater. Mar. Chem. 50, 139–157 (1995).

    Article 

    Google Scholar
     

  • Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassler, C. S., van den Berg, C. M. G. & Boyd, P. W. Toward a regional classification to provide a more inclusive examination of the ocean biogeochemistry of iron-binding ligands. Front. Mar. Sci. 4, 19 (2017).

    Article 

    Google Scholar
     

  • Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sijerčić, A. & Price, N. M. Hydroxamate siderophore secretion by Pseudoalteromonas haloplanktis during steady-state and transient growth under iron limitation. Mar. Ecol. Prog. Ser. 531, 105–120 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gauglitz, J. M. et al. Dynamic proteome response of a marine Vibrio to a gradient of iron and ferrioxamine bioavailability. Mar. Chem. 229, 103913 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Siderophore production and utilization by marine bacteria in the North Pacific Ocean. Limnol. Oceanogr. 68, 1636–1653 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinez, J. S. et al. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc. Natl Acad. Sci. USA 100, 3754–3759 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, J. S. et al. Self-assembling amphiphilic siderophores from marine bacteria. Science 287, 1245–1247 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G., Martinez, J. S., Groves, J. T. & Butler, A. Membrane affinity of the amphiphilic marinobactin siderophores. J. Am. Chem. Soc. 124, 13408–13415 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saha, R., Saha, N., Donofrio, R. S. & Bestervelt, L. L. Microbial siderophores: a mini review. J. Basic Microbiol. 53, 303–317 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, B. R., Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22, 1077–1090 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenwald, J. et al. Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J. Biol. Chem. 282, 2987–2995 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. & Boyer, G. L. Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol. 62, 4044–4048 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Pakulski, J. D. et al. Iron stimulation of Antarctic bacteria. Nature 383, 133–134 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Granger, J. & Price, N. M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr. 44, 541–555 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Church, M. J., Hutchins, D. A. & Ducklow, H. W. Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl. Environ. Microbiol. 66, 455–466 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendonca, C. M. et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc. Natl Acad. Sci. USA 117, 32358–32369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirchman, D. L., Hoffman, K. A., Weaver, R. & Hutchins, D. A. Regulation of growth and energetics of a marine bacterium by nitrogen source and iron availability. Mar. Ecol. Prog. Ser. 250, 291–296 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beier, S. et al. The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. Environ. Microbiol. Rep. 7, 427–434 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, E. Y., Primeau, F. & Sarmeento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fitzsimmons, J. N. et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171, 303–324 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conway, T. M., Rosenberg, A. D., Adkins, J. F. & John, S. G. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793, 44–52 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieber, M. et al. Isotopic fingerprinting of biogeochemical processes and iron sources in the iron-limited surface Southern Ocean. Earth Planet. Sci. Lett. 567, 116967 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ellwood, M. J. et al. Distinct iron cycling in a Southern Ocean eddy. Nat. Commun. 11, 825 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Front. Mar. Sci. 8, 630494 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Boiteau, R. M., Fitzsimmons, J. N., Repeta, D. J. & Boyle, E. A. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry. Anal. Chem. 85, 4357–4362 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boiteau, R. M. & Repeta, D. J. An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7, 877–884 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baars, O., Morel, F. M. & Perlman, D. H. ChelomEx: isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Anal. Chem. 86, 11298–11305 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boiteau, R. M. Molecular Determination of Marine Iron Ligands by Mass Spectrometry. Thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution (2016).

  • Vraspir, J. M., Holt, P. D. & Butler, A. Identification of new members within suites of amphiphilic marine siderophores. BioMetals 24, 85–92 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boiteau, R. M. et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc. Natl Acad. Sci. 113, 14237–14242 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kem, M. P. & Butler, A. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications. BioMetals 28, 445–459 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • GEOTRACES Intermediate Data Product Group. The GEOTRACES Intermediate Data Product 2021 version 2 (IDP2021v2). NERC EDS British Oceanographic Data Centre NOC. https://doi.org/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e (2023).

  • Xiang, Y. & Lam, P. J. Size-fractionated compositions of marine suspended particles in the Western Arctic Ocean: lateral and vertical sources. J. Geophys. Res. Oceans 125, e2020JC016144 (2020).

    Article 
    ADS 

    Google Scholar
     



  • Source link