Molecular evidence of anteroposterior patterning in adult echinoderms – Nature

-


  • Hyman, L. H. The Invertebrates, Vol. IV, Echinodermata: The Coelomate Bilateria (McGraw-Hill, 1955).

  • Smith, A. B. Deuterostomes in a twist: the origins of a radical new body plan. Evol. Dev. 10, 493–503 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Albuixech-Crespo, B. et al. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol. 15, e2001573 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pani, A. M. et al. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483, 289–294 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Reichert, H. & Simeone, A. Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos. Trans. R. Soc. Lond. B 356, 1533–1544 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hirth, F. et al. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130, 2365–2373 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomer, R., Denes, A. S., Tessmar-Raible, K. & Arendt, D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142, 800–809 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bromham, L. D. & Degnan, B. M. Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol. Dev. 1, 166–171 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • David, B. & Mooi, R. How Hox genes can shed light on the place of echinoderms among the deuterostomes. EvoDevo 5, 22 (2014).

  • Lowe, C. J., Clarke, D. N., Medeiros, D. M., Rokhsar, D. S. & Gerhart, J. The deuterostome context of chordate origins. Nature 520, 456–465 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lowe, C. J. & Wray, G. A. Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389, 718–721 (1997).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Com. Biol. 3, 371 (2020).

  • Popodi, E.,Andrews, M. & Raff, R. A. Evolution of body plans: using homeobox genes to examine the development of the radial CNS of echinoderms. Dev. Biol. 163, 540 (1994).


    Google Scholar
     

  • Rozhnov, S. V. Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality. Nat. Sci. 6, 171–183 (2014).


    Google Scholar
     

  • Holland, L. Z. Evolution of basal deuterostome nervous systems. J. Exp. Biol. 218, 637–645 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Byrne, M., Martinez, P. & Morris, V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. Evol. Dev. 18, 137–143 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Peterson, K. J., Arenas‐Mena, C. & Davidson, E. H. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evol. Dev. 2, 93–101 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arenas-Mena, C., Cameron, A. R. & Davidson, E. H. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127, 4631–4643 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, V. B. & Byrne, M. Involvement of two Hox genes and Otx in echinoderm body‐plan morphogenesis in the sea urchin Holopneustes purpurescens. J. Exp. Zool. B Mol. 304, 456–467 (2005).

    Article 

    Google Scholar
     

  • Hara, Y. et al. Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev. Genes Evol. 216, 797–809 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cisternas, P. & Byrne, M. Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev. Genes Evol. 219, 613–618 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, V. B. & Byrne, M. Oral–aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev. Genes Evol. 224, 1–11 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuchimoto, J. & Yamaguchi, M. Hox expression in the direct‐type developing sand dollar Peronella japonica. Dev. Dynam. 243, 1020–1029 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kikuchi, M., Omori, A., Kurokawa, D. & Akasaka, K. Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus. Dev. Genes Evol. 225, 275–286 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adachi, S. et al. Anteroposterior molecular registries in ectoderm of the echinus rudiment. Dev. Dynam. 247, 1297–1307 (2018).

    Article 

    Google Scholar
     

  • Junker, J. P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662–675 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tominaga, H., Nishitsuji, K. & Satoh, N. A single-cell RNA-seq analysis of early larval cell-types of the starfish, Patiria pectinifera: insights into evolution of the chordate body plan. Dev. Biol. 496, 52–62 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baughman, K. W. et al. Genomic organization of Hox and Para Hox clusters in the echinoderm, Acanthaster planci. Genesis 52, 952–958 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. & Rubenstein, J. L. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan, R., Graf, M., Mason, I., Lumsden, A. & Kiecker, C. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev. 4, 35 (2009).

  • Byrne, M. et al. Expression of genes and proteins of the pax‐six‐eya‐dach network in the metamorphic sea urchin: insights into development of the enigmatic echinoderm body plan and sensory structures. Dev. Dynam. 247, 239–249 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Paganos, P. et al. New model organism to investigate extraocular photoreception: opsin and retinal gene expression in the sea urchin Paracentrotus lividus. Cells 11, 2636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, P., Uhlinger, K. R. & Lowe, C. J. The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory. Curr. Biol. 27, 87–95 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neuro. 2, 99–108 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Darras, S. et al. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol. 16, e2003698 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–365 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krumlauf, R. et al. Hox homeobox genes and regionalisation of the nervous system. J. Neurobiol. 24, 1328–1340 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, M., Revelli, J. P., Eichele, G., Barron, M. & Schwartz, R. J. Expression of chick Tbx-2, Tbx-3 and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol. 228, 95–105 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129, 2459–2472 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barton-Owen, T. B., Ferrier, D. E. & Somorjai, I. M. Pax3/7 duplicated and diverged independently in amphioxus, the basal chordate lineage. Sci Rep. 8, 9414 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Koop, D. et al. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. BMC Dev. Biol. 17, 4 (2017).

  • Lowe, C. J. et al. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol. 4, e291 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panganiban, G. et al. The origin and evolution of animal appendages. Proc. Natl Acad. Sci. USA 94, 5162–5166 (1997).

  • Hotchkiss, F. H. A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24, 200–214 (1998).

    Article 

    Google Scholar
     

  • Tarazona, O. A., Lopez, D. H., Slota, L. A. & Cohn, M. J. Evolution of limb development in cephalopod mollusks. eLife 8, e43828 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacalli, T. Echinoderm conundrums: Hox genes, heterochrony and an excess of mouths. EvoDevo 5, 46 (2014).

  • Yankura, K. A., Martik, M. L., Jennings, C. K. & Hinman, V. F. Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol. 8, 143 (2010).

  • Gąsiorowski, L. & Hejnol, A. Hox gene expression during development of the phoronid Phoronopsis harmeri. EvoDevo 11, 2 (2020).

  • True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 53–80 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zákány, J. & Duboule, D. Hox genes in digit development and evolution. Cell Tissue Res. 296, 19–25 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, A. B. & Zamora, S. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc. R. Soc. B 280, 20131197 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omori, A., Shibata, T. F. & Akasaka, K. Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica. Dev. Genes Evol. 230, 305–314 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamora, S. & Rahman, I. A. Deciphering the early evolution of echinoderms with Cambrian fossils. Paleontology 57, 1105–1119 (2014).

    Article 

    Google Scholar
     

  • Montanaro, J., Gruber, D. & Leisch, N. Improved ultrastructure of marine invertebrates using non-toxic buffers. PeerJ 4, e1860 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 (eds Navab, N. et al.) 234–241 (Springer, 2015).

  • Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kruse, F., Junker, J. P., Van Oudenaarden, A. & Bakkers, J. Tomo-seq: a method to obtain genome-wide expression data with spatial resolution. Methods Cell. Biol. 135, 299–307 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmable cDNA concatenation. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01815-7 (2023).

  • Mattick, J. IsoSeq v.4.00. GitHub https://github.com/PacificBiosciences/IsoSeq (2023).

  • Tseng, E. cDNA cupcake v.25.2.0. GitHub https://github.com/Magdoll/cDNA_Cupcake/wiki (2022).

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guttman, L. Some necessary conditions for common-factor analysis. Psychometrika 19, 149–161 (1954).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article 
    MATH 

    Google Scholar
     

  • Aronowicz, J. & Lowe, C. J. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Int. Comp. Biol. 46, 890–901 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lemons, D., Fritzenwanker, J. H., Gerhart, J., Lowe, C. J. & McGinnis, W. Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev. Biol. 344, 358–362 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satoh, N. et al. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis 52, 925–934 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritzenwanker, J. H., Uhlinger, K. R., Gerhart, J., Silva, E. & Lowe, C. J. Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc. Natl Acad. Sci. USA 116, 8403–8408 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kaul-Strehlow, S., Urata, M., Praher, D. & Wanninger, A. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube. Sci. Rep. 7, 7003 (2017).

  • Choi, H. M. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuehn, E. et al. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. J. Exp. Zool. B 338, 225–240 (2022).

    Article 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowe, C. J., Tagawa, K., Humphreys, T., Kirschner, M. & Gerhart, J. Hemichordate embryos: procurement, culture and basic methods. Methods Cell. Biol. 74, 171–194 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Formery, L. et al. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J. Comp. Neurol. 529, 1135–1156 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, J. R., Paganos, P., Benvenuto, G., Arnone, M. I. & Oliveri, P. Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo 12, 3 (2021).



  • Source link

    Latest news

    Mo Jomaa breaks down IPO prep for founders at TC All Stage

    An IPO may not be on your near-term roadmap, but the best founders start planning for it long...

    ‘Donkey Kong Bananza’ Could be the Next Killer Game the Switch 2 Needs

    More than a decade after the acclaimed Donkey Kong Country: Tropical Freeze, DK is returning with Donkey Kong...

    Genesis AI launches with $105M seed funding from Eclipse, Khosla to build AI models for robots

    Genesis AI, a startup that aims to build a foundational model for powering all kinds of robots, has...

    Xiaomi’s YU7 Is an SUV-Sized Middle Finger to Tesla’s Model Y

    Another week, another Chinese electric car poised to deliver an extinction event to Western automakers.This time it’s Xiaomi,...

    How to Use Markdown

    Whether you're posting on Reddit, Discord, or Github, there's only one way to add formatting: Markdown. If you...

    Cloudflare Is Blocking AI Crawlers by Default

    Last year, internet infrastructure firm Cloudflare launched tools enabling its customers to block AI scrapers. Today the company...

    Must read

    You might also likeRELATED
    Recommended to you