Observation and quantification of the pseudogap in unitary Fermi gases – Nature

    0
    Observation and quantification of the pseudogap in unitary Fermi gases – Nature


  • Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ. Science 273, 325–329 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trivedi, N. & Randeria, M. Deviations from Fermi-liquid behavior above Tc in 2D short coherence length superconductors. Phys. Rev. Lett. 75, 312 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Stajic, J. et al. Nature of superfluidity in ultracold Fermi gases near Feshbach resonances. Phys. Rev. A 69, 063610 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Zwerger, W. (ed.) The BCS–BEC Crossover and the Unitary Fermi Gas (Springer, 2012).

  • Randeria, M. & Taylor, E. Crossover from Bardeen–Cooper–Schrieffer to Bose–Einstein condensation and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science 305, 1128–1130 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schunck, C. H., Shin, Y., Schirotzek, A. & Ketterle, W. Determination of the fermion pair size in a resonantly interacting superfluid. Nature 454, 739–743 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murthy, P. A. et al. High-temperature pairing in a strongly interacting two-dimensional Fermi gas. Science 359, 452–455 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, J. T., Gaebler, J. P. & Jin, D. S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Feld, M., Fröhlich, B., Vogt, E., Koschorreck, M. & Köhl, M. Observation of a pairing pseudogap in a two-dimensional Fermi gas. Nature 480, 75–78 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, E. J. Review of pseudogaps in strongly interacting Fermi gases. Rep. Prog. Phys. 80, 104401 (2017).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Schneider, W. & Randeria, M. Universal short-distance structure of the single-particle spectral function of dilute Fermi gases. Phys. Rev. A 81, 021601 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nascimbène, S. et al. Fermi-liquid behavior of the normal phase of a strongly interacting gas of cold atoms. Phys. Rev. Lett. 106, 215303 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mukherjee, B. et al. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Baird, L., Wang, X., Roof, S. & Thomas, J. E. Measuring the hydrodynamic linear response of a unitary Fermi gas. Phys. Rev. Lett. 123, 160402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baym, G., Pethick, C. J., Yu, Z. & Zwierlein, M. W. Coherence and clock shifts in ultracold Fermi gases with resonant interactions. Phys. Rev. Lett. 99, 190407 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mukherjee, B. et al. Spectral response and contact of the unitary Fermi gas. Phys. Rev. Lett. 122, 203402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Robaszkiewicz, S., Micnas, R. & Chao, K. A. Thermodynamic properties of the extended Hubbard model with strong intra-atomic attraction and an arbitrary electron density. Phys. Rev. B 23, 1447 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Sá de Melo, C. A. R., Randeria, M. & Engelbrecht, J. R. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Q., He, Y., Chien, C.-C. & Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates. Rep. Prog. Phys. 72, 122501 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ku, M. J. H., Sommer, A. T., Cheuk, L. W. & Zwierlein, M. W. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563–567 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haussmann, R., Punk, M. & Zwerger, W. Spectral functions and rf response of ultracold fermionic atoms. Phys. Rev. A 80, 063612 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Carcy, C. et al. Contact and sum rules in a near-uniform Fermi gas at unitarity. Phys. Rev. Lett. 122, 203401 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. & Levin, K. Momentum resolved radio frequency spectroscopy in trapped Fermi gases. Phys. Rev. Lett. 102, 190402 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Biss, H. et al. Excitation spectrum and superfluid gap of an ultracold Fermi gas. Phys. Rev. Lett. 128, 100401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magierski, P., Wlazłowski, G., Bulgac, A. & Drut, J. E. Finite-temperature pairing gap of a unitary Fermi gas by quantum Monte Carlo calculations. Phys. Rev. Lett. 103, 210403 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS–BEC crossover. Phys. Rev. A 75, 023610 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kondo, T. et al. Point nodes persisting far beyond Tc in Bi2212. Nat. Commun. 6, 7699 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Esslinger, T. Fermi–Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P. & Törmä, P. The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Rep. Prog. Phys. 81, 046401 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pasienski, M. & DeMarco, B. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express 16, 2176–2190 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Murthy, P. A. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ries, M. G. et al. Observation of pair condensation in the quasi-2D BEC–BCS crossover. Phys. Rev. Lett. 114, 230401 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ketterle, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cim. 31, 247–422 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Duan, Z.-X., Wu, W.-T., Lin, Y.-T. & Yang, S.-J. Simple and active magnetic-field stabilization for cold atom experiments. Rev. Sci. Instrum. 93, 123201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borkowski, M. et al. Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances. Rev. Sci. Instrum. 94, 073202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X.-T. et al. Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum. 90, 054708 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics, Vol. I, 522–523 (Wiley-VCH, 2020).

  • Riou, J.-F. et al. Theoretical tools for atom-laser-beam propagation. Phys. Rev. A 77, 033630 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Horikoshi, M. et al. Appropriate probe condition for absorption imaging of ultracold 6Li atoms. J. Phys. Soc. Japan 86, 104301 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ockeloen, C. F., Tauschinsky, A. F., Spreeuw, R. J. C. & Whitlock, S. Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Stancik, A. L. & Brauns, E. B. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 47, 66–69 (2008).

    Article 
    CAS 

    Google Scholar
     



  • Source link