Optomechanical realization of the bosonic Kitaev chain – Nature

-


  • Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).

    Article 
    ADS 

    Google Scholar
     

  • McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018).


    Google Scholar
     

  • Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article 

    Google Scholar
     

  • Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS 

    Google Scholar
     

  • Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS 

    Google Scholar
     

  • Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).


    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 4005 (2018).

    Article 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk–boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghatak, A., Brandenbourger, M., Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C.-W. et al. Mechanical analogue of a Majorana bound state. Adv. Mater. 31, 1904386 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qian, K. et al. Observation of Majorana-like bound states in metamaterial-based Kitaev chain analogs. Phys. Rev. Res. 5, 012012 (2023).

    Article 

    Google Scholar
     

  • Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokomizo, K. & Murakami, S. Non-Bloch band theory in bosonic Bogoliubov–de Dennes systems. Phys. Rev. B 103, 165123 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Flynn, V. P., Cobanera, E. & Viola, L. Topology by dissipation: Majorana bosons in metastable quadratic Markovian dynamics. Phys. Rev. Lett. 127, 245701 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathew, J. P., Pino, J. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically-induced squeezing. Nature 606, 82–87 (2021).

    Article 

    Google Scholar
     

  • Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).


    Google Scholar
     

  • Hatano, N. & Nelson, D. R. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56, 8651–8673 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, Y. Why does bulk boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun. 2, 035043 (2018).

    Article 

    Google Scholar
     

  • Coulais, C., Fleury, R. & Wezel, J. Topology and broken hermiticity. Nat. Phys. 17, 9–13 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brunelli, M., Wanjura, C. C. & Nunnenkamp, A. Restoration of the non-Hermitian bulk–boundary correspondence via topological amplification. SciPost Phys. 15, 173 (2022).

  • Porras, D. & Fernández-Lorenzo, S. Topological amplification in photonic lattices. Phys. Rev. Lett. 122, 143901 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett. 127, 213601 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and skin effect. Phys. Rev. Lett. 130, 203605 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, H. et al. Non-Hermitian topolectrical circuit sensor with high sensitivity. Adv. Sci. 10, 2301128 (2023).

    Article 

    Google Scholar
     

  • Parto, M., Leefmans, C., Williams, J. & Marandi, A. Enhanced sensitivity via non-Hermitian topology. Preprint at arxiv.org/abs/2305.03282 (2023).

  • Könye, V. et al. Non-Hermitian topological ohmmeter. Preprint at arxiv.org/abs/2308.11367 (2023).

  • Bardyn, C. E. & Imamoglu, A. Majorana-like modes of light in a one-dimensional array of nonlinear cavities. Phys. Rev. Lett. 109, 253606 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barlas, Y. & Prodan, E. Topological braiding of non-Abelian midgap defects in classical metamaterials. Phys. Rev. Lett. 124, 146801 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, G., Jin, T., Wang, Y.-X., McDonald, A. & Clerk, A. Entanglement phase transition due to reciprocity breaking without measurement or post-selection. PRX Quantum 5, 010313 (2023).

  • Busnaina, J. H. et al. Quantum simulation of the bosonic Kitaev chain. Preprint at https://arxiv.org/abs/2309.06178 (2023).

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Weaver, M. J. et al. Coherent optomechanical state transfer between disparate mechanical resonators. Nat. Commun. 8, 824 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shkarin, A. B. et al. Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112, 013602 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meystre, P. & Sargent, M. Elements of Quantum Optics 4th edn (Springer, 2007).



  • Source link

    Latest news

    Meteorologists Say the National Weather Service Did Its Job in Texas

    “The signal was out there that this is going to be a heavy, significant rainfall event,” says Vagasky....

    I’m an Outdoor Writer. I’m Shopping These 55 Deals From REI’s 4th of July Sale

    The 4th of July is over, but the REI deals continue. The REI 4th of July sale is...

    Bose’s Soundlink Plus Is the Midsize Banger You Didn’t Know You Needed

    With so many Bluetooth speakers out there, and more arriving almost daily, it can be easy to underestimate...

    Everything You Can Do in the Photoshop Mobile App

    You know your software is a success when its name becomes a verb: You'll now commonly hear about...

    Is It Time to Stop Protecting the Grizzly Bear?

    But the ESA was only meant to safeguard against “reasonably foreseeable future threats,” Willms argues. Congress has the...

    Must read

    You might also likeRELATED
    Recommended to you