Predicting crystal form stability under real-world conditions – Nature

-


  • Saal, C. Selection of solid-state forms: challenges, opportunities, lessons learned and adventures from recent years. J. Pharm. Pharmacol. 67, 755–756 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, M. et al. Prediction of the relative free energies of drug polymorphs above zero kelvin. Cryst. Growth Des. 20, 5211–5224 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abramov, Y. A., Sun, G. & Zeng, Q. Emerging landscape of computational modeling in pharmaceutical development. J. Chem. Inf. Model. 62, 1160–1171 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoja, J. et al. Reliable and practical computational description of molecular crystal polymorphs. Sci. Adv. 5, eaau3338 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, S. L. & Reutzel-Edens, S. M. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discov. Today 21, 912–923 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hartel, R. W. Advances in food crystallization. Annu. Rev. Food Sci. Technol. 4, 277–292 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Large-scale computational screening of molecular organic semiconductors using crystal structure prediction. Chem. Mater. 30, 4361–4371 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cady, H. H., Larson, A. C. & Cromer, D. T. The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr. 16, 617–623 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Lamberth, C., Jeanmart, S., Luksch, T. & Plant, A. Current challenges and trends in the discovery of agrochemicals. Science 341, 742–746 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lee, E. H. A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 9, 163–175 (2014).

    Article 

    Google Scholar
     

  • Censi, R. & Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 20, 18759–18776 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, J. et al. Ritonavir: an extraordinary example of conformational polymorphism. Pharm. Res. 18, 859–866 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokoyama, T., Umeda, T., Kuroda, K., Sato, K. & Takagishi, Y. Studies on drug nonequivalence. VII. Bioavailability of acetohexamide polymorphs. Chem. Pharm. Bull. 27, 1476–1478 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Aguiar, A. J. & Zelmer, J. E. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci. 58, 983–987 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolff, H.-M., Quéré, L. & Riedner, J. Polymorphic form of rotigotine. European patent 2215072 B1 (2015).

  • Newman, A. & Wenslow, R. Solid form changes during drug development: good, bad, and ugly case studies. AAPS Open 2, 2 (2016).

    Article 

    Google Scholar
     

  • Braun, D. E. et al. Inconvenient truths about solid form landscapes revealed in the polymorphs and hydrates of gandotinib. Cryst. Growth Des. 19, 2947–2962 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peresypkin, A. et al. Discovery of a stable molecular complex of an API with HCl: a long journey to a conventional salt. J. Pharm. Sci. 97, 3721–3726 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chekal, B. P. et al. The challenges of developing an API crystallization process for a complex polymorphic and highly solvating system. Part I. Org. Process Res. Dev. 13, 1327–1337 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Neumann, M. A., van de Streek, J., Fabbiani, F. P. A., Hidber, P. & Grassmann, O. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 6, 7793 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, C. R. et al. Minimizing polymorphic risk through cooperative computational and experimental exploration. J. Am. Chem. Soc. 142, 16668–16680 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhardwaj, R. M. et al. A prolific solvate former, galunisertib, under the pressure of crystal structure prediction, produces ten diverse polymorphs. J. Am. Chem. Soc. 141, 13887–13897 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, J. L. et al. Derisking the polymorph landscape: the complex polymorphism of mexiletine hydrochloride. Cryst. Growth Des. 21, 7150–7167 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dybeck, E. C., McMahon, D. P., Day, G. M. & Shirts, M. R. Exploring the multi-minima behavior of small molecule crystal polymorphs at finite temperature. Cryst. Growth Des. 19, 5568–5580 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Francia, N. F., Price, L. S., Nyman, J., Price, S. L. & Salvalaglio, M. Systematic finite-temperature reduction of crystal energy landscapes. Cryst. Growth Des. 20, 6847–6862 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sun, G. et al. Current state-of-the-art in-house and cloud-based applications of virtual polymorph screening of pharmaceutical compounds: a challenging case of AZD1305. Cryst. Growth Des. 21, 1972–1983 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bowskill, D. H., Sugden, I. J., Konstantinopoulos, S., Adjiman, C. S. & Pantelides, C. C. Crystal structure prediction methods for organic molecules: state of the art. Annu. Rev. Chem. Biomol. Eng. 12, 593–623 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dudek, M. K. & Drużbicki, K. Along the road to crystal structure prediction (CSP) of pharmaceutical-like molecules. CrystEngComm 24, 1665–1678 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Greenwell, C. et al. Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods. Chem. Sci. 11, 2200–2214 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beran, G. J. O. et al. How many more polymorphs of ROY remain undiscovered. Chem. Sci. 13, 1288–1297 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Harnessing cloud architecture for crystal structure prediction calculations. Cryst. Growth Des. 18, 6891–6900 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mortazavi, M. et al. Computational polymorph screening reveals late-appearing and poorly-soluble form of rotigotine. Commun. Chem. 2, 70 (2019).

    Article 

    Google Scholar
     

  • Mattei, A. et al. Efficient crystal structure prediction for structurally related molecules with accurate and transferable tailor-made force fields. J. Chem. Theory Comput. 18, 5725–5738 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, D. E., Karamertzanis, P. G. & Price, S. L. Which, if any, hydrates will crystallise? Predicting hydrate formation of two dihydroxybenzoic acids. Chem. Commun. 47, 5443–5445 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cruz-Cabeza, A. J. et al. Predicting stoichiometry and structure of solvates. Chem. Commun. 46, 2224–2226 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cruz-Cabeza, A. J., Day, G. M. & Jones, W. Towards prediction of stoichiometry in crystalline multicomponent complexes. Chem. Eur. J. 14, 8830–8836 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dybeck, E. C. et al. A comparison of methods for computing relative anhydrous–hydrate stability with molecular simulation. Cryst. Growth Des. 23, 142–167 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hong, R. S., Mattei, A., Sheikh, A. Y. & Tuckerman, M. E. A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates. Proc. Natl Acad. Sci. USA 119, e2204414119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermann, J. & Tkatchenko, A. Density functional model for van der Waals interactions: unifying many-body atomic approaches with nonlocal functionals. Phys. Rev. Lett. 124, 146401 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Mony, L., Kew, J. N., Gunthorpe, M. J. & Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 157, 1301–1317 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auvin, S. et al. Radiprodil, a NR2B negative allosteric modulator, from bench to bedside in infantile spasm syndrome. Ann. Clin. Transl. Neurol. 7, 343–352 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullier, B. et al. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 123, 322–331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed, M.-E. F., Zeng, J., Marroum, P. J., Song, I.-H. & Othman, A. A. Pharmacokinetics of upadacitinib with the clinical regimens of the extended‐release formulation utilized in rheumatoid arthritis phase 3 trials. Clin. Pharmacol. Drug Dev. 8, 208–216 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duggan, S. & Keam, S. J. Upadacitinib: first approval. Drugs 79, 1819–1828 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Neumann, M. A. & van de Streek, J. How many ritonavir cases are there still out there? Faraday Discuss. 211, 441–458 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maddox, J. Crystals from first principles. Nature 335, 201 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Poltavsky, I. & Tkatchenko, A. Machine learning force fields: recent advances and remaining challenges. J. Phys. Chem. Lett. 12, 6551–6564 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. J. & Scuseria, G. E. in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy Vol. 13 (ed. Langhoff, S. R.) 47–108 (Springer, 1995).

  • Beran, G. J. O., Wright, S. E., Greenwell, C. & Cruz-Cabeza, A. J. The interplay of intra- and intermolecular errors in modeling conformational polymorphs. J. Chem. Phys. 156, 104112 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumann, M. A. & Perrin, M.-A. Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. J. Phys. Chem. B 109, 15531–15541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Knuth, F., Carbogno, C., Atalla, V., Blum, V. & Scheffler, M. All-electron formalism for total energy strain derivatives and stress tensor components for numeric atom-centered orbitals. Comput. Phys. Commun. 190, 33–50 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Togo, A., Seto, Y. & Pashov, D. Spglib. GitHub https://github.com/spglib/spglib (2008).

  • Yu, V. W. et al. ELSI: A unified software interface for Kohn–Sham electronic structure solvers. Comput. Phys. Commun. 222, 267–285 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Havu, V., Blum, V., Havu, P. & Scheffler, M. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 228, 8367–8379 (2009).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tkatchenko, A., DiStasio, R. A. Jr., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ambrosetti, A., Reilly, A. M., DiStasio, R. A. Jr. & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Řezáč, J., Greenwell, C. & Beran, G. J. O. Accurate noncovalent interactions via dispersion-corrected second-order Møller–Plesset perturbation theory. J. Chem. Theory Comput. 14, 4711–4721 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, I. Y., Ren, X., Rinke, P., Blum, V. & Scheffler, M. Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar. New J. Phys. 15, 123033 (2013).

    Article 
    ADS 

    Google Scholar
     

  • psi4. Anaconda.org. https://anaconda.org/psi4/repo.

  • Smith, D. G. A. et al. Psi4 1.4: open-source software for high-throughput quantum chemistry. J. Chem. Phys. 152, 184108 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumann, M. A., Leusen, F. J. J. & Kendrick, J. A major advance in crystal structure prediction. Angew. Chem. Int. Ed. 47, 2427–2430 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Neumann, M. A. Tailor-made force fields for crystal-structure prediction. J. Phys. Chem. B 112, 9810–9829 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest news

    A Pro-Russia Disinformation Campaign Is Using Free AI Tools to Fuel a ‘Content Explosion’

    A pro-Russia disinformation campaign is leveraging consumer artificial intelligence tools to fuel a “content explosion” focused on exacerbating...

    Kleida Martiro is leading the AI scale conversation at TC All Stage

    AI-native startups are rewriting the rules of what early traction looks like — and too often, investors are...

    Here’s What Mark Zuckerberg Is Offering Top AI Talent

    As Mark Zuckerberg staffs up Meta’s new superintelligence lab, he’s offered top tier research talent pay packages of...

    Sam Altman Slams Meta’s AI Talent Poaching Spree: ‘Missionaries Will Beat Mercenaries’

    OpenAI CEO Sam Altman is hitting back at Meta CEO Mark Zuckerberg’s recent AI talent poaching spree. In...

    AI Videos of Black Women Depicted as Primates Are Going Viral

    An AI-generated “bigfoot baddie,” with acrylic nails and a pink wig, speaks directly to her imaginary audience using...

    Nothing’s New Phone (3) and Headphone (1) Look Nothing Like You’ve Seen Before

    The phone has a grid design with three columns, representing the flexible printed circuit boards underneath. The triple-camera...

    Must read

    You might also likeRELATED
    Recommended to you