Quantum-enhanced sensing on optical transitions through finite-range interactions – Nature

-


  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

  • McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, G., Puri, R. & Singh, R. Atomic Schrödinger cat states. Phys. Rev. A 56, 2249 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F. & Roscilde, T. Multipartite entangled states in dipolar quantum simulators. Phys. Rev. Lett. 129, 150503 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev, A 46, R6797 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F. & Roscilde, T. Robust spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians. Phys. Rev. A 105, 022625 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Young, J. T., Muleady, S. R., Perlin, M. A., Kaufman, A. M. & Rey, A. M. Enhancing spin squeezing using soft-core interactions. Phys. Rev. Res. 5, L012033 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Block, M. et al. A universal theory of spin squeezing. Preprint at https://arxiv.org/abs/2301.09636 (2023).

  • Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tscherbul, T. V., Ye, J. & Rey, A. M. Robust nuclear spin entanglement via dipolar interactions in polar molecules. Phys. Rev. Lett. 130, 143002 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Foss-Feig, M., Gong, Z.-X., Gorshkov, A. V., and Clark, C. W. Entanglement and spin-squeezing without infinite-range interactions. Preprint at https://arxiv.org/abs/1612.07805 (2016).

  • Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kranzl, F. et al. Controlling long ion strings for quantum simulation and precision measurements. Phys. Rev. A 105, 052426 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Springer, 1989).

  • Qiao, M. et al. Observing frustrated quantum magnetism in two-dimensional ion crystals. Preprint at https://arxiv.org/abs/2204.07283 (2022).

  • Kiesenhofer, D. et al. Controlling two-dimensional Coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Itano, W. M. et al. Bragg diffraction from crystallized ion plasmas. Science 279, 686–689 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Preprint at https://arxiv.org/abs/2303.08053 (2023)

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in a programmable optical clock. Preprint at https://arxiv.org/abs/2303.08078 (2023).

  • Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS 

    Google Scholar
     

  • Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Preprint at https://arxiv.org/abs/2303.08805 (2023).

  • Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720–724 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S.-L., Monroe, C. & Duan, L.-M. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, C. F. J. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14, 1261–1295 (1986).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Foss-Feig, M., Hazzard, K. R. A., Bollinger, J. J. & Rey, A. M. Nonequilibrium dynamics of arbitrary-range Ising models with decoherence: an exact analytic solution. Phys. Rev. A 87, 042101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schachenmayer, J., Pikovski, A. & Rey, A. M. Many-body quantum spin dynamics with Monte Carlo trajectories on a discrete phase space. Phys. Rev. X 5, 011022 (2015).


    Google Scholar
     

  • Zhu, B. H., Rey, A. M. & Schachenmayer, J. A generalized phase space approach for solving quantum spin dynamics. New J. Phys. 21, 082001 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Huber, J., Rey, A. M. & Rabl, P. Realistic simulations of spin squeezing and cooperative coupling effects in large ensembles of interacting two-level systems. Phys. Rev. A 105, 013716 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Muleady, S. R., Yang, M., White, S. R. & Rey, A. M. Validating phase-space methods with tensor networks in two-dimensional spin models with power-law interactions. Preprint at https://arxiv.org/abs/2305.17242 (2023).

  • Gardiner, C. W. Stochastic Methods: A Handbook for the Natural and Social Sciences 4th edn (ed. Haken, H.) (Springer, 2009).

  • Roscilde, T., Comparin, T. & Mezzacapo, F. Entangling dynamics from effective rotor/spin-wave separation in U(1)-symmetric quantum spin models. Preprint at https://arxiv.org/abs/2302.09271 (2023).

  • Roscilde, T., Comparin, T. & Mezzacapo, F. Rotor/spin-wave theory for quantum spin models with U(1) symmetry. Preprint at https://arxiv.org/abs/2303.00380 (2023).



  • Source link

    Latest news

    My Favorite All-in-One Printer and Scanner Is $50 Off

    While a printer upgrade might not sound like the most exciting way to spend your hard-earned dollars, the...

    Government Workers Say Their Out-of-Office Replies Were Forcibly Changed to Blame Democrats for Shutdown

    On Wednesday, the first day of the US government shutdown, employees at the Department of Education (DOE) set...

    How startups could be affected by a prolonged government shutdown

    The U.S. government shutdown could stifle deal flow, freeze visa processing for workers, and cause other problems for...

    Celebrating the partners driving Disrupt’s big ideas, connections, and community

    Tech Zone Daily Disrupt 2025 wouldn’t be possible without the incredible support of our sponsors, who bring world-class...

    Phia’s Phoebe Gates and Sophia Kianni talk consumer AI at Disrupt 2025

    Consumer AI is having its breakout moment — and few startups have captured the spotlight this year quite...

    Must read

    You might also likeRELATED
    Recommended to you