Resolving intervalley gaps and many-body resonances in moiré superconductors – Nature

-


  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suhl, H. Dispersion theory of the Kondo effect. Phys. Rev. 138, A515–A523 (1965).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Abrikosov, A. A. Electron scattering on magnetic impurities in metals and anomalous resistivity effects. Phys. Phys. Fiz. 2, 5–20 (1965).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).

  • Batlle-Porro, S. et al. Cryo-near-field photovoltage microscopy of heavy-fermion twisted symmetric trilayer graphene. Preprint at http://arxiv.org/abs/2402.12296 (2024).

  • Ghosh, A. et al. Thermopower probes of emergent local moments in magic-angle twisted bilayer graphene. Nat. Phys. 21, 732–739 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Călugăru, D. et al. The thermoelectric effect and its natural heavy fermion explanation in twisted bilayer and trilayer graphene. Preprint at http://arxiv.org/abs/2402.14057 (2024).

  • Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lei, C., Linhart, L., Qin, W., Libisch, F. & MacDonald, A. H. Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene. Phys. Rev. B 104, 035139 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carr, S. et al. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett. 20, 3030–3038 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, L. et al. Magnetic and defect probes of the SmB6 surface state. Sci. Adv. 4, eaau4886 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yee, M. M. et al. Imaging the Kondo insulating gap on SmB6. Preprint at http://arxiv.org/abs/1308.1085 (2013).

  • Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat Commun. 9, 3324 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai, G. et al. Dynamical correlations and order in magic-angle twisted bilayer graphene. Phys. Rev. X 14, 031045 (2024).

    CAS 

    Google Scholar
     

  • Calderón, M. J., Camjayi, A., Datta, A. & Bascones, E. Cascades in transport and optical conductivity of twisted bilayer graphene. Phys. Rev. B 112, L041126 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Coleman, P. in Handbook of Magnetism and Advanced Magnetic Materials (eds Kronmüller, H. & Parkin, S.) (Wiley, 2007).

  • Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).

    CAS 

    Google Scholar
     

  • Herzog-Arbeitman, J. et al. Heavy fermions as an efficient representation of atomistic strain and relaxation in twisted bilayer graphene. Preprint at http://arxiv.org/abs/2405.13880 (2025).

  • Herzog-Arbeitman, J. et al. Kekulé spiral order from strained topological heavy fermions. Phys. Rev. B 112, 125129 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bagchi, M. et al. Spin-polarized scanning tunneling microscopy measurements of an Anderson impurity. Phys. Rev. Lett. 133, 246701 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. & Vafek, O. Theory of correlated Chern insulators in twisted bilayer graphene. Phys. Rev. X 14, 021042 (2024).

    CAS 

    Google Scholar
     

  • Deutscher, G. Andreev–Saint-James reflections: a probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. et al. Double-dome unconventional superconductivity in twisted trilayer graphene. Preprint at http://arxiv.org/abs/2404.09909 (2024).

  • Mukherjee, A. et al. Superconducting magic-angle twisted trilayer graphene with competing magnetic order and moiré inhomogeneities. Nat. Mater. 24, 1400–1406 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M., Sun, S., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Experimental evidence for nodal superconducting gap in moiré graphene. Science 391, 79–83 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lewandowski, C., Lantagne-Hurtubise, É., Thomson, A., Nadj-Perge, S. & Alicea, J. Andreev reflection spectroscopy in strongly paired superconductors. Phys. Rev. B 107, L020502 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sainz-Cruz, H., Pantaleón, P. A., Phong, V. T., Jimeno-Pozo, A. & Guinea, F. Junctions and superconducting symmetry in twisted bilayer graphene. Phys. Rev. Lett. 131, 016003 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sukhachov, P. O., Von Oppen, F. & Glazman, L. I. Andreev reflection in scanning tunneling spectroscopy of unconventional superconductors. Phys. Rev. Lett. 130, 216002 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, S., Suman, S., Randeria, M. & Sensarma, R. Andreev versus tunneling spectroscopy of unconventional flat-band superconductors. Proc. Natl Acad. Sci. 122, e2509881122 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, G.-D., Wang, Y.-J., Tong, N. & Song, Z.-D. Kondo phase in twisted bilayer graphene. Phys. Rev. B 109, 045419 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, H. Raw data: resolving intervalley gaps and many-body resonances in moire superconductor. Zenodo https://doi.org/10.5281/zenodo.17884628 (2025).

  • Călugăru D. et al. Obtaining the spectral function of moiré graphene heavy-fermions using iterative perturbation theory. Preprint at https://arxiv.org/abs/2509.18256 (2025).



  • Source link

    Latest news

    Ring Kills Flock Safety Deal After Super Bowl Ad Uproar

    The widespread protests in Iran have exposed both Tehran’s brutal tactics in the streets, where state authorities have...

    These Are the Best Alternatives to Google’s Android Operating System

    Want Google out of your life? It's pretty easy to find alternative search, email, and photo storage providers,...

    I Tried H&R Block’s DIY Tax Service. Here’s Who’ll Benefit From It

    Throughout, there's a Virtual Assistant chatbot if you need to ask questions or get help, which gives me...

    Gear News of the Week: Samsung Sets a Date for Galaxy Unpacked, and Fitbit’s AI Coach Comes to iOS

    Samsung will unveil its next flagship smartphone lineup on February 25 at its Galaxy Unpacked event in San...

    The Internet’s Favorite Blanket Is 45 Percent Off

    If you’ve spent more than five minutes on TikTok, you’ve probably heard someone rave about Lola Blankets. They’re...

    Some of the Year’s Best Mattress Sales Are on Presidents’ Day. Here’s What We Recommend

    Hooray for a three-day weekend and a little bit of extra time to relax! Presidents’ Day is also...

    Must read

    You might also likeRELATED
    Recommended to you