Scalable spin squeezing in a dipolar Rydberg atom array – Nature

    0
    Scalable spin squeezing in a dipolar Rydberg atom array – Nature


  • Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, J., Wang, X., Sun, C. & Nori, F. Quantum spin squeezing. Phys. Rep. 509, 89–165 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F. & Roscilde, T. Robust spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians. Phys. Rev. A 105, 022625 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F., Robert-de Saint-Vincent, M. & Roscilde, T. Scalable spin squeezing from spontaneous breaking of a continuous symmetry. Phys. Rev. Lett. 129, 113201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F. & Roscilde, T. Multipartite entangled states in dipolar quantum simulators. Phys. Rev. Lett. 129, 150503 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Block, M. et al. A universal theory of spin squeezing. Preprint at https://arxiv.org/abs/2301.09636 (2023).

  • Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Robinson, J. M. et al. Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit. Preprint at https://arxiv.org/abs/2211.08621 (2022).

  • Foss-Feig, M., Gong, Z.-X., Gorshkov, A. V. & Clark, C. W. Entanglement and spin-squeezing without infinite-range interactions. Preprint at https://arxiv.org/abs/1612.07805 (2016).

  • Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, J. T., Muleady, S. R., Perlin, M. A., Kaufman, A. M. & Rey, A. M. Enhancing spin squeezing using soft-core interactions. Phys. Rev. Res. 5, L012033 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Roscilde, T., Comparin, T. & Mezzacapo, F. Entangling dynamics from effective rotor/spin-wave separation in U(1)-symmetric quantum spin models. Preprint at https://arxiv.org/abs/2302.09271 (2023).

  • Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Preprint at https://arxiv.org/abs/2211.09780 (2022).

  • Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Peprint at https://arxiv.org/abs/2210.06309 (2022).

  • Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Optical control of the resonant dipole-dipole interaction between Rydberg atoms. Phys. Rev. Lett. 119, 053202 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sørensen, A., Duan, L.-M., Cirac, J. I. & Zoller, P. Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63–66 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sørensen, A. S. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Estéve, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose-Einstein condensate. Nature 455, 1216–1219 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roscilde, T., Mezzacapo, F. & Comparin, T. Spin squeezing from bilinear spin-spin interactions: two simple theorems. Phys. Rev. A 104, L040601 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Anderson, P. W. An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694–701 (1952).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Anderson, P. W. Basic Notions Of Condensed Matter Physics 1st edn (Westview Press/Addison-Wesley, 1997).

  • Roscilde, T., Comparin, T. & Mezzacapo, F. Rotor/spin-wave theory for quantum spin models with U(1) symmetry. Preprint at https://arxiv.org/abs/2303.00380 (2023).

  • Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Muessel, W. et al. Twist-and-turn spin squeezing in Bose-Einstein condensates. Phys. Rev. A 92, 023603 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sorelli, G., Gessner, M., Smerzi, A. & Pezzè, L. Fast and optimal generation of entanglement in bosonic Josephson junctions. Phys. Rev. A 99, 022329 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Waugh, J. S., Huber, L. M. & Haeberlen, U. Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in a programmable optical clock. Preprint at https://arxiv.org/abs/2303.08078 (2023).

  • Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Preprint at https://arxiv.org/abs/2303.08805 (2023).

  • Franke, J. et al. Quantum-enhanced sensing on an optical transition via emergent collective quantum correlations. Preprint at https://arxiv.org/abs/2303.10688 (2023).

  • Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).


    Google Scholar
     

  • Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    CAS 

    Google Scholar
     

  • Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS 

    Google Scholar
     

  • Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahanamoku-Meyer, G. D. & Wei, J. Gregdmeyer/dynamite: v.0.3.0. Zenodo https://doi.org/10.5281/zenodo.7622981 (2023).

  • Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: tensor network Python (TeNPy). SciPost Phys. Lect. Notes https://scipost.org/10.21468/SciPostPhysLectNotes.5 (2018).



  • Source link