Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).
Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).
Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).
Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
Ma, J., Wang, X., Sun, C. & Nori, F. Quantum spin squeezing. Phys. Rep. 509, 89–165 (2011).
Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).
Comparin, T., Mezzacapo, F. & Roscilde, T. Robust spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians. Phys. Rev. A 105, 022625 (2022).
Comparin, T., Mezzacapo, F., Robert-de Saint-Vincent, M. & Roscilde, T. Scalable spin squeezing from spontaneous breaking of a continuous symmetry. Phys. Rev. Lett. 129, 113201 (2022).
Comparin, T., Mezzacapo, F. & Roscilde, T. Multipartite entangled states in dipolar quantum simulators. Phys. Rev. Lett. 129, 150503 (2022).
Block, M. et al. A universal theory of spin squeezing. Preprint at https://arxiv.org/abs/2301.09636 (2023).
Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).
Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).
Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).
Robinson, J. M. et al. Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit. Preprint at https://arxiv.org/abs/2211.08621 (2022).
Foss-Feig, M., Gong, Z.-X., Gorshkov, A. V. & Clark, C. W. Entanglement and spin-squeezing without infinite-range interactions. Preprint at https://arxiv.org/abs/1612.07805 (2016).
Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).
Young, J. T., Muleady, S. R., Perlin, M. A., Kaufman, A. M. & Rey, A. M. Enhancing spin squeezing using soft-core interactions. Phys. Rev. Res. 5, L012033 (2023).
Roscilde, T., Comparin, T. & Mezzacapo, F. Entangling dynamics from effective rotor/spin-wave separation in U(1)-symmetric quantum spin models. Preprint at https://arxiv.org/abs/2302.09271 (2023).
Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).
Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Preprint at https://arxiv.org/abs/2211.09780 (2022).
Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Peprint at https://arxiv.org/abs/2210.06309 (2022).
Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).
Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).
de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Optical control of the resonant dipole-dipole interaction between Rydberg atoms. Phys. Rev. Lett. 119, 053202 (2017).
Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).
Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).
Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).
Sørensen, A., Duan, L.-M., Cirac, J. I. & Zoller, P. Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63–66 (2001).
Sørensen, A. S. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001).
Estéve, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose-Einstein condensate. Nature 455, 1216–1219 (2008).
Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).
Roscilde, T., Mezzacapo, F. & Comparin, T. Spin squeezing from bilinear spin-spin interactions: two simple theorems. Phys. Rev. A 104, L040601 (2021).
Anderson, P. W. An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694–701 (1952).
Anderson, P. W. Basic Notions Of Condensed Matter Physics 1st edn (Westview Press/Addison-Wesley, 1997).
Roscilde, T., Comparin, T. & Mezzacapo, F. Rotor/spin-wave theory for quantum spin models with U(1) symmetry. Preprint at https://arxiv.org/abs/2303.00380 (2023).
Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009).
Muessel, W. et al. Twist-and-turn spin squeezing in Bose-Einstein condensates. Phys. Rev. A 92, 023603 (2015).
Sorelli, G., Gessner, M., Smerzi, A. & Pezzè, L. Fast and optimal generation of entanglement in bosonic Josephson junctions. Phys. Rev. A 99, 022329 (2019).
Waugh, J. S., Huber, L. M. & Haeberlen, U. Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182 (1968).
Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in a programmable optical clock. Preprint at https://arxiv.org/abs/2303.08078 (2023).
Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Preprint at https://arxiv.org/abs/2303.08805 (2023).
Franke, J. et al. Quantum-enhanced sensing on an optical transition via emergent collective quantum correlations. Preprint at https://arxiv.org/abs/2303.10688 (2023).
Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).
Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).
Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).
Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).
Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Kahanamoku-Meyer, G. D. & Wei, J. Gregdmeyer/dynamite: v.0.3.0. Zenodo https://doi.org/10.5281/zenodo.7622981 (2023).
Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: tensor network Python (TeNPy). SciPost Phys. Lect. Notes https://scipost.org/10.21468/SciPostPhysLectNotes.5 (2018).