Signal amplification in a solid-state sensor through asymmetric many-body echo – Nature

-


  • Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casola, F., Sar, T. V. D. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 024105–13 (2018).

    Article 

    Google Scholar
     

  • Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. et al. Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155–161 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. & Chang, H.-C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Quantum metrology with strongly interacting spin systems. Phys. Rev. X 10, 031003 (2020).

    CAS 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).

    CAS 

    Google Scholar
     

  • Macrì, T., Smerzi, A. & Pezzè, L. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 621, 728–733 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Phys. Rev. Lett. 131, 063401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Franke, J. et al. Quantum-enhanced sensing on optical transitions through finite-range interactions. Nature 621, 740–745 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. et al. Probing dynamical phase transitions with a superconducting quantum simulator. Sci. Adv. 6, 4935–4952 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koppenhöfer, M., Groszkowski, P., Lau, H.-K. & Clerk, A. A.Dissipative superradiant spin amplifier for enhanced quantum sensing. PRX Quantum 3, 030330 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shields, B. J., Unterreithmeier, Q. P., Leon, N. P.de, Park, H. & Lukin, M. D.Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Improving metrology with quantum scrambling. Science 380, 1381–1384 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hughes, L. B. et al. Two-dimensional spin systems in PECVD-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11, 021101 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hughes, L. B. et al. Strongly interacting, two-dimensional, dipolar spin ensembles in (111)-oriented diamond. Phys. Rev. X 15, 021035 (2025).

    CAS 

    Google Scholar
     

  • Tetienne, J. P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article 

    Google Scholar
     

  • Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Cambridge Univ. Press, 2020).

  • Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Miller, C. et al. Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules. Nature 633, 332–337 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, L. S. et al. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys. Rev. Lett. 130, 210403 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulte, M., Martínez-Lahuerta, V. J., Scharnagl, M. S. & Hammerer, K. Ramsey interferometry with generalized one-axis twisting echoes. Quantum 4, 268 (2020).

    Article 

    Google Scholar
     

  • Braemer, A., Franz, T., Weidemüller, M. & Gärttner, M. Pair localization in dipolar systems with tunable positional disorder. Phys. Rev. B 106, 134212 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Franz, T. et al. Emergent pair localization in a many-body quantum spin system. Preprint at https://arxiv.org/abs/2207.14216 (2022).

  • Block, M. et al. Scalable spin squeezing from finite-temperature easy-plane magnetism. Nat. Phys. 20, 1575–1581 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwasigroch, M. P. & Cooper, N. R. Synchronization transition in dipole-coupled two-level systems with positional disorder. Phys. Rev. A 96, 053610 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y.-C. et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 6, 662–667 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arunkumar, N. et al. Quantum logic enhanced sensing in solid-state spin ensembles. Phys. Rev. Lett. 131, 100801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc. Natl Acad. Sci. USA 117, 14636–14641 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Hu, Z. & Liu, Y. C. Fast generation of GHZ-like states using collective-spin XYZ model. Phys. Rev. Lett. 132, 113402 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wurtz, J., Polkovnikov, A. & Sels, D. Cluster truncated Wigner approximation in strongly interacting systems. Ann. Phys. 395, 341–365 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Braemer, A., Vahedi, J. & Gärttner, M. Cluster truncated Wigner approximation for bond-disordered Heisenberg spin models. Phys. Rev. B 110, 054204 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Depolarization dynamics in a strongly interacting solid-state spin ensemble. Phys. Rev. Lett. 118, 093601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photon. Res. 8, 1289–1295 (2020).

    Article 

    Google Scholar
     

  • Vannimenus, J. & Toulouse, G. Theory of the frustration effect. II. Ising spins on a square lattice. J. Phys. C Solid State Phys. 10, L537 (1977).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Latest news

    How startups could be affected by a prolonged government shutdown

    The U.S. government shutdown could stifle deal flow, freeze visa processing for workers, and cause other problems for...

    Celebrating the partners driving Disrupt’s big ideas, connections, and community

    Tech Zone Daily Disrupt 2025 wouldn’t be possible without the incredible support of our sponsors, who bring world-class...

    Phia’s Phoebe Gates and Sophia Kianni talk consumer AI at Disrupt 2025

    Consumer AI is having its breakout moment — and few startups have captured the spotlight this year quite...

    China Rolls Out Its First Talent Visa as the US Retreats on H-1Bs

    The bottom line is that, unlike the US, China is not a country of immigrants. In 2020, only...

    Tech Zone Daily Disrupt 2025 Bundle Sale Ends Tomorrow

    Ticktock! The Founder and Investor Bundle sale for Tech Zone Daily Disrupt 2025 ends tomorrow, October 3, at...

    Perplexity acquires the team behind Sequioa-backed AI design startup Visual Electric

    Sequoia-backed AI design startup Visual Electric said that it is joining search startup Perplexity today. The company noted...

    Must read

    You might also likeRELATED
    Recommended to you