Signatures of fractional charges via anyon–trions in twisted MoTe2 – Nature

-


  • Halperin, B. I. & Jain, J. K. (eds) Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

    Article 
    ADS 

    Google Scholar
     

  • de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Reznikov, M. et al. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238–241 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Dolev, M. et al. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Goldman, V. J. & Su, B. Resonant tunneling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lee, J. Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nakamura, J. et al. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).


    Google Scholar
     

  • Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wójs, A. & Quinn, J. J. Energy spectra of fractional quantum Hall systems in the presence of a valence hole. Phys. Rev. B 63, 045303 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Byszewski, M. et al. Optical probing of composite fermions in a two-dimensional electron gas. Nat. Phys. 2, 239–243 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Anderson, E. et al. Trion sensing of a zero-field composite Fermi liquid. Nature 635, 590–595 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mostaan, N., Goldman, N., İmamoğlu, A. & Grusdt, F. Anyon-trions in atomically thin semiconductor heterostructures. Preprint at https://arxiv.org/abs/2507.08933v2 (2025).

  • Wagner, G. & Neupert, T. Sensing the binding and unbinding of anyons at impurities. Preprint at https://arxiv.org/abs/2507.08928v1 (2025).

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chakraborty, C. et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono-and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Thureja, D. et al. Electrically tunable quantum confinement of neutral excitons. Nature 606, 298–304 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578583 (2024).

    Article 

    Google Scholar
     

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. 21, 549–555 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Xu, F. et al. Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2. Nat. Phys. 21, 542–548 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).

  • Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, E. et al. Magnetoelectric control of helical light emission in a moiré Chern magnet. Phys. Rev. X 15, 031057 (2025).

    CAS 

    Google Scholar
     

  • Liu, Z., Li, B. & Wu, F. Characterization of fractional Chern insulator quasiparticles in moiré transition metal dichalcogenides. Phys. Rev. B 112, 245104 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of high-temperature dissipationless fractional Chern insulator. Preprint at https://arxiv.org/abs/2503.10989v1 (2025).



  • Source link

    Latest news

    Ring Kills Flock Safety Deal After Super Bowl Ad Uproar

    The widespread protests in Iran have exposed both Tehran’s brutal tactics in the streets, where state authorities have...

    These Are the Best Alternatives to Google’s Android Operating System

    Want Google out of your life? It's pretty easy to find alternative search, email, and photo storage providers,...

    I Tried H&R Block’s DIY Tax Service. Here’s Who’ll Benefit From It

    Throughout, there's a Virtual Assistant chatbot if you need to ask questions or get help, which gives me...

    Gear News of the Week: Samsung Sets a Date for Galaxy Unpacked, and Fitbit’s AI Coach Comes to iOS

    Samsung will unveil its next flagship smartphone lineup on February 25 at its Galaxy Unpacked event in San...

    The Internet’s Favorite Blanket Is 45 Percent Off

    If you’ve spent more than five minutes on TikTok, you’ve probably heard someone rave about Lola Blankets. They’re...

    Some of the Year’s Best Mattress Sales Are on Presidents’ Day. Here’s What We Recommend

    Hooray for a three-day weekend and a little bit of extra time to relax! Presidents’ Day is also...

    Must read

    You might also likeRELATED
    Recommended to you