Thermal Ca2+/Mg2+ exchange reactions to synthesize CO2 removal materials – Nature

-


  • IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge University Press, 2022).

  • Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kelemen, P., Benson, S. M., Pilorgé, H., Psarras, P. & Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 1, 9 (2019).

    Article 

    Google Scholar
     

  • Smith, S. et al. The State of Carbon Dioxide Removal 1st edn (Univ. Manchester, 2023).

  • Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article 
    ADS 

    Google Scholar
     

  • National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2019).

  • Lackner, K. S. Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Environ. Res. 27, 193–232 (2002).

    MATH 

    Google Scholar
     

  • International Energy Agency. Direct Air Capture 2022: A Key Technology for Net Zero (IEA, 2022).

  • Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • McQueen, N., Ghoussoub, M., Mills, J. & Scholten, M. A Scalable Direct Air Capture Process Based on Accelerated Weathering of Calcium Hydroxide (Heirloom, 2022).

  • Stern, M. C., Simeon, F., Herzog, H. & Hatton, T. A. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. 6, 2505–2517 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Primers 2, 68 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • White, A. F. & Brantley, S. L. Chemical Weathering Rates of Silicate Minerals (Walter de Gruyter, 2018).

  • Olajire, A. A. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 109, 364–392 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Emerson, S. & Hedges, J. Chemical Oceanography and the Marine Carbon Cycle (Cambridge Univ. Press, 2008).

  • Kelemen, P. B. et al. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: review and new insights. Chem. Geol. 550, 119628 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Stillings, M., Shipton, Z. K. & Lunn, R. J. Mechanochemical processing of silicate rocks to trap CO2. Nat. Sustain. 6, 780–788 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Farina, V. et al. CO2 hydrogenation induced by mechanochemical activation of olivine with water under CO2 atmosphere. Front. Energy Res. 7, 107 (2019).

    Article 

    Google Scholar
     

  • Summers, C. A., Dahlin, D. C., Rush, G. E., O’Connor, W. K. & Gerdemann, S. J. Grinding methods to enhance the reactivity of olivine. Min. Metall. Explor. 22, 140–144 (2005).

    CAS 

    Google Scholar
     

  • Renforth, P., von Strandmann, P. A. E. P. & Henderson, G. M. The dissolution of olivine added to soil: Implications for enhanced weathering. Appl. Geochem. 61, 109–118 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vink, J., Giesen, D. & Ahlrichs, E. Olivine Weathering in Field Trials: Effect of Natural Environmental Conditions on Mineral Dissolution and the Potential Toxicity of Nickel (Deltares, 2022).

  • Wikedzi, A. W. Optimization and Performance of Grinding Circuits: The Case of Buzwagi Gold Mine (BGM). PhD thesis, Technische Univ/ Bergakademie Freiberg (2018).

  • Orumwense, O. A. & Forssberg, E. Superfine and ultrafine grinding—a literature survey. Miner. Process. Extr. Metall. Rev. 11, 107–127 (1992).

    Article 

    Google Scholar
     

  • O’Connor, W. et al. Aqueous Mineral Carbonation. Report No. DOE/ARC-TR-04-002 (Department of Energy, 2005).

  • Haque, F., Santos, R. M. & Chiang, Y. W. CO2 sequestration by wollastonite- amended agricultural soils–An Ontario field study. Int. J. Greenhouse Gas Control 97, 103017 (2020).

    Article 
    CAS 

    Google Scholar
     

  • US Department of the Interior & US Geological Survey. Mineral Commodity Summaries 2024 (USGS, 2024).

  • Rausis, K., Stubbs, A. R., Power, I. M. & Paulo, C. Rates of atmospheric CO2 capture using magnesium oxide powder. Int. J. Greenhouse Gas Control 119, 103701 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harrison, A. L., Power, I. M. & Dipple, G. M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47, 126–134 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erans, M., Nabavi, S. A. & Manović, V. Carbonation of lime-based materials under ambient conditions for direct air capture. J. Clean. Prod. 242, 118330 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Triantafyllou, G., Alevizos, G. & Stratakis, A. Experimental study of the carbonation process in natural hydraulic lime binders. In Proc. Annual Meeting of DGGV-DMG, GeoBerlin, 373–374 (GFZ German Research Centre for Geosciences, 2015).

  • Bale, C. W. et al. Reprint of: FactSage thermochemical software and databases, 2010–2016. Calphad 55, 1–19 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Swift, W., Panek, A., Smith, G., Vogel, G. & Jonke, A. Decomposition of calcium sulfate: a review of the literature. Report No. 7224692 (ERDA, 1976).

  • Gupta, K., Singh, S. & Rao, M. R. Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5. Nano Energy 11, 146–153 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Hollingbery, L. A. & Hull, T. R. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim. Acta 509, 1–11 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Karunadasa, K. S. P., Manoratne, C. H., Pitawala, H. M. T. G. A. & Rajapakse, R. M. G. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J. Phys. Chem. Solids 134, 21–28 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Engström, F., Adolfsson, D., Samuelsson, C., Sandström, Å. & Björkman, B. A study of the solubility of pure slag minerals. Miner. Eng. 41, 46–52 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Strandkvist, I., Björkman, B. & Engström, F. Synthesis and dissolution of slag minerals – a study of β-dicalcium silicate, pseudowollastonite and monticellite. Can. Metall. Quart. 54, 446–454 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Reershemius, T. et al. Initial validation of a soil-based mass-balance approach for empirical monitoring of enhanced rock weathering rates. Environ. Sci. Technol. 57, 19497–19507 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, A. & Yan, D. S. Mineral Processing Design and Operations: An Introduction (eds Gupta, A. & Yan, D.) (Elsevier, 2016).

  • Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Weber, J. N. & Greer, R. T. Dehydration of serpentine: heat of reaction and reaction kinetics at PH2O = 1 atm. Am. Mineral. 50, 450–464 (1965).

    CAS 
    MATH 

    Google Scholar
     

  • Werner, M., Hariharan, S. & Mazzotti, M. Flue gas CO2 mineralization using thermally activated serpentine: from single-to double-step carbonation. Phys. Chem. Chem. Phys. 16, 24978–24993 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Werner, M., Hariharan, S., Zingaretti, D., Baciocchi, R. & Mazzotti, M. Dissolution of dehydroxylated lizardite at flue gas conditions: I. Experimental study. Chem. Eng. J. 241, 301–313 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Su, C. et al. Thermodynamic properties of San Carlos olivine at high temperature and high pressure. Acta Geochimica 37, 171–179 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     



  • Source link

    Latest news

    These Are the 10 DOGE Operatives Inside the Social Security Administration

    The SSA did not respond to a request from WIRED about what the DOGE operatives are working on...

    Sesame, the startup behind the viral virtual assistant Maya, releases its base AI model

    AI company Sesame has released the base model that powers Maya, the impressively realistic voice assistant. The model, which is 1 billion...

    Y Combinator’s police surveillance darling Flock Safety raises $275M at $7.5B valuation

    Flock Safety and one of its long-time VCs, Bedrock Capital, announced Thursday that the startup raised a fresh...

    Inside Elon Musk’s ‘Digital Coup’

    Musk and Trump’s relationship was cemented on July 13, 2024, when a would-be assassin came within inches of...

    What’s Lost When the Human Drivers Are Gone?

    This week on Uncanny Valley, we look ahead into a future where driverless cars are mainstream. Source link

    Must read

    You might also likeRELATED
    Recommended to you