3D printable elastomers with exceptional strength and toughness – Nature

    0
    3D printable elastomers with exceptional strength and toughness – Nature


  • Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface. Nat. Commun. 12, 6070 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herzberger, J., Sirrine, J. M., Williams, C. B. & Long, T. E. Polymer design for 3D printing elastomers: recent advances in structure, properties, and printing. Prog. Polym. Sci. 97, 101144 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat. Chem. 15, 1773–1779 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. 3D printing of high viscosity UV-curable resin for highly stretchable and resilient elastomer. Adv. Mater. 35, 2304430 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wallin, T. J. et al. 3D printable tough silicone double networks. Nat. Commun. 11, 4000 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, D. K. et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 29, 1606000 (2017).

    Article 

    Google Scholar
     

  • Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Sci. Robot. 8, eadd1053 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, X. et al. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 366, 1376–1379 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 33, 2101498 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, R. et al. Extremely strong and tough biodegradable poly(urethane) elastomers with unprecedented crack tolerance via hierarchical hydrogen-bonding interactions. Adv. Mater. 35, 2212130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Molecularly engineered unparalleled strength and supertoughness of poly(urea-urethane) with shape memory and clusterization-triggered emission. Adv. Mater. 34, 2205763 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Petersen, S. R. et al. Ultra-tough elastomers from stereochemistry-directed hydrogen bonding in isosorbide-based polymers. Angew. Chem. Int. Ed. 61, e202115904 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noda, I., Dowrey, A. E., Marcott, C., Story, G. M. & Ozaki, Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 54, 236A–248A (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, W., Wu, B., Sun, S. & Wu, P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12, 4082 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Recent progress in double network elastomers: one plus one is greater than two. Adv. Funct. Mater. 32, 2110244 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Mechanically interlocked networks cross-linked by a molecular necklace. Nat. Commun. 13, 1393 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, Y., Paunović, N. & Leroux, J. C. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv. Funct. Mater. 32, 2109864 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Feng, H. et al. Ultratough yet dynamic crystalline poly(thiourethane) network directly from low viscosity precursors. CCS Chem. 6, 682–692 (2024).

    Article 
    CAS 

    Google Scholar
     



  • Source link