A break in mitochondrial endosymbiosis as a basis for inflammatory diseases – Nature

    0
    1
    A break in mitochondrial endosymbiosis as a basis for inflammatory diseases – Nature


  • Murphy, M. P. & Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 17, 865–886 (2018). The many pathogical roles of mitochondria are discussed.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015). The key signalling roles of mitochondria are discussed in an evolutionary context.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, M. & Shirihai, O. S. Mitochondrial signal transduction. Cell Metab. 34, 1620–1653 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monzel, A. S., Enriquez, J. A. & Picard, M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat. Metab. 5, 546–562 (2023). A recent review that highlights the many emerging facets of mitochondrial biology.

    Article 
    PubMed 

    Google Scholar
     

  • Tait, S. W. & Green, D. R. Mitochondria and cell signalling. J. Cell Sci. 125, 807–815 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahat, A., MacVicar, T. & Langer, T. Metabolism and innate immunity meet at the mitochondria. Front. Cell Dev. Biol. 9, 720490 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchi, S., Guilbaud, E., Tait, S. W. G., Yamazaki, T. & Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 23, 159–173 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 22, 629–638 (2022). Here the authors suggest how the origins of mitochondria can lead to innate immunity mechanisms.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krysko, D. V. et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32, 157–164 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaplan, G. G. & Windsor, J. W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 56–66 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dinse, G. E. et al. Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol. 72, 1026–1035 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R., Li, Z., Liu, S. & Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 13, e065186 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duarte-Garcia, A. et al. Rising incidence and prevalence of systemic lupus erythematosus: a population-based study over four decades. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2022-222276 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, G. et al. Estimation of the global prevalence, incidence, years lived with disability of rheumatoid arthritis in 2019 and forecasted incidence in 2040: results from the Global Burden of Disease Study 2019. Clin. Rheumatol. 42, 2297–2309 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019). An excellent account of how chronic inflammation changes as we age and how environmental factors impact on inflammatory diseases.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gontier, N. in Encyclopedia of Evolutionary Biology Vol. 4 (ed. Kliman, R. M.) 261–271 (Elsevier, 2016).

  • Garg, S., Zimorski, V. & Martin, W. F. in Encyclopedia of Evolutionary Biology Vol. 1 (ed. Kliman, R. M.) 511–517 (Elsevier, 2016).

  • Dacks, J. B. et al. The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Roger, A. J., Munoz-Gomez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967). A classic paper that led to the acceptance of endosymbiosis as the origin of mitochondria.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, W. F. & Mentel, M. The origin of mitochondria. Nat. Educ. 3, 58 (2010).


    Google Scholar
     

  • John, P. & Whatley, F. R. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254, 495–498 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geiger, O., Sanchez-Flores, A., Padilla-Gomez, J. & Degli Esposti, M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Sci. Adv. 9, eadh0066 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raval, P. K., Martin, W. F. & Gould, S. B. Mitochondrial evolution: gene shuffling, endosymbiosis, and signaling. Sci. Adv. 9, eadj4493 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgenstern, M. et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 33, 2464–2483 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, J. & Bhattacharya, D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat. Rev. Genet. 10, 495–505 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paschen, S. A., Neupert, W. & Rapaport, D. Biogenesis of beta-barrel membrane proteins of mitochondria. Trends Biochem. Sci. 30, 575–582 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, A. et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while Bcl-Xl prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. S., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. D. Induction of apoptotic program in cell-free extracts – requirement for datp and cytochrome c. Cell 86, 147–157 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suhaili, S. H., Karimian, H., Stellato, M., Lee, T. H. & Aguilar, M. I. Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophys. Rev. 9, 443–457 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, B. et al. Mitochondrial cristae architecture protects against mtDNA release and inflammation. Cell Rep. 41, 111774 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ott, M., Zhivotovsky, B. & Orrenius, S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ. 14, 1243–1247 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz-Gomez, S. A., Slamovits, C. H., Dacks, J. B. & Wideman, J. G. The evolution of MICOS: ancestral and derived functions and interactions. Commun. Integr. Biol. 8, e1094593 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, J. R., Mourier, A., Yamada, J., McCaffery, J. M. & Nunnari, J. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 4, e07739 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell. Cardiol. 78, 100–106 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarlett, J. L. & Murphy, M. P. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett. 418, 282–286 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernardi, P. et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 30, 1869–1885 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. CpG methylation patterns of human mitochondrial DNA. Sci. Rep. 6, 23421 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riley, J. S. & Tait, S. W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21, e49799 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Kim, H. S. & Chung, J. H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 55, 510–519 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, 6378 (2018). First description of a role for BAK/BAX and mitochondrial herniation in the release of mtDNA.

  • Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019). Evidence for oxidized mtDNA as an activator of the NLRP3 inflammasome.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian, H. et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55, 1370–1385 (2022). Evidence for oxidized mtDNA as an activator of the NLRP3 inflammasome.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billingham, L. K. et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 23, 692–704 (2022). Evidence that mitochondrial phosphocreatine generated from ATP derived from oxidative phosphorylation is required for ATP production in the cytosol by creatine kinase B, for NLRP3 activation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury, A., Witte, S. & Aich, A. Role of mitochondrial nucleic acid sensing pathways in health and patho-physiology. Front. Cell Dev. Biol. 10, 796066 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell Dev. Biol. 9, 675465 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, J. E., Carroll, J., Altman, M. C. & Fearnley, I. M. Chapter 6 mass spectrometric characterization of the thirteen subunits of bovine respiratory complexes that are encoded in mitochondrial DNA. Methods Enzymol. 456, 111–131 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le, Y., Murphy, P. M. & Wang, J. M. Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorward, D. A. et al. Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome. Thorax 72, 928–936 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cai, N. et al. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat. Med. 27, 1564–1575 (2021). A fascinating report linking mitochondrial N-formylmethionine formation and pathology.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8, 728 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizzuto, M. & Pelegrin, P. Cardiolipin in immune signaling and cell death. Trends Cell Biol. 30, 892–903 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 90 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J 417, 1–13 (2009). An overview of how mitochondrial redox signals may be generated.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, H. S., Dighe, P. A., Mezera, V., Monternier, P. A. & Brand, M. D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 292, 16804–16809 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robb, E. L. et al. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 293, 9869–9879 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, J. J. et al. Reverse electron transfer by respiratory complex I catalyzed in a modular proteoliposome system. J. Am. Chem. Soc. 144, 6791–6801 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roca, F. J., Whitworth, L. J., Prag, H. A., Murphy, M. P. & Ramakrishnan, L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science. 376, eabh2841 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, M. P. & Chouchani, E. T. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18, 461–469 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016). This paper describes how mitochondrial metabolism can be repurposed to generate succinate as a signal.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christman, M. F., Storz, G. & Ames, B. N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl Acad. Sci. USA 86, 3484–3488 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863, 2977–2992 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, D. G. et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 1, 16–33 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013). Evidence for macrophage-derived succinate being a pro-inflammatory signal.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005). A key paper linking succinate to HIF1-alpha activation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matilainen, O., Quiros, P. M. & Auwerx, J. Mitochondria and epigenetics – crosstalk in homeostasis and stress. Trends Cell Biol. 27, 453–463 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, J. H. Mitochondria signaling to the epigenome: a novel role for an old organelle. Free Radic. Biol. Med. 170, 59–69 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day, E. A. & O’Neill, L. A. J. Protein targeting by the itaconate family in immunity and inflammation. Biochem. J. 479, 2499–2510 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGettrick, A. F. & O’Neill, L. A. Two for the price of one: itaconate and its derivatives as an anti-infective and anti-inflammatory immunometabolite. Curr. Opin. Immunol. 80, 102268 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Reyes, I. et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585, 288–292 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenkel-Pinter, M. et al. Adaptation and exaptation: from small molecules to feathers. J. Mol. Evol. 90, 166–175 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarman, O. D., Biner, O., Wright, J. J. & Hirst, J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci. Rep. 11, 10143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, M. F. & Vignais, P. M. Production of superoxide anions in Paracoccus denitrificans. Arch. Biochem. Biophys. 203, 365–371 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotlyar, A. B. & Borovok, N. NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans. Eur. J. Biochem. 269, 4020–4024 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Y., Zeng, J., Wang, X., Drlica, K. & Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl Acad. Sci. USA 116, 10064–10071 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. & Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. 21, 415–430 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 186, 3261–3276 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Phylogenetic and molecular evolutionary analysis of mitophagy receptors under hypoxic conditions. Front. Physiol. 8, 539 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, M., Koshiba, T. & Ichinohe, T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat. Commun. 10, 4624 (2019). A role for mitochondrial DNA in the induction of anti-viral immunity in response to an RNA virus (influenza).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahun, A. S. et al. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner. Cell Rep. 42, 112179 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7, 3594 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colaco, C. B., Scadding, G. K. & Lockhart, S. Anti-cardiolipin antibodies in neurological disorders: cross-reaction with anti-single stranded DNA activity. Clin. Exp. Immunol. 68, 313–319 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colapietro, F., Lleo, A. & Generali, E. Antimitochondrial antibodies: from bench to bedside. Clin. Rev. Allergy Immunol. 63, 166–177 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. M. & Tsokos, G. C. Mitochondria in the pathogenesis of systemic lupus erythematosus. Curr. Rheumatol. Rep. 24, 88–95 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker, Y. et al. Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front. Immunol. 10, 1026 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zecchini, V. et al. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 615, 499–506 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Domenech, G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37, 321–336 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debattisti, V., Gerencser, A. A., Saotome, M., Das, S. & Hajnoczky, G. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 21, 1667–1680 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croon, M. et al. FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction. Sci. Adv. 8, eabn7105 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campello, S. et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879–2886 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grafstein, B. & Forman, D. S. Intracellular transport in neurons. Physiol. Rev. 60, 1167–1283 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisner, V., Picard, M. & Hajnoczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20, 755–765 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science. 303, 1007–1010 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target Ther. 6, 65 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z., Sun, Y., Qi, Z., Cao, L. & Ding, S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 12, 66 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, L. F. et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 6, e22187 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCully, J. D., Levitsky, S., Del Nido, P. J. & Cowan, D. B. Mitochondrial transplantation for therapeutic use. Clin. Transl. Med. 5, 16 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashida, K. et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J. Transl. Med. 19, 214 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sardon Puig, L., Valera-Alberni, M., Canto, C. & Pillon, N. J. Circadian rhythms and mitochondria: connecting the dots. Front. Genet. 9, 452 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, E. M., Chao, C. C., Wang, M. T., Hsu, C. L. & Chen, P. C. PM(2.5) promotes pulmonary fibrosis by mitochondrial dysfunction. Environ. Toxicol. 38, 1905–1913 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gioscia-Ryan, R. A. et al. Lifelong voluntary aerobic exercise prevents age- and Western diet- induced vascular dysfunction, mitochondrial oxidative stress and inflammation in mice. J. Physiol. 599, 911–925 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link