A global timekeeping problem postponed by global warming – Nature

    0
    1
    A global timekeeping problem postponed by global warming – Nature


  • McCarthy, D. D. & Seidelmann, P. K. Time: From Earth Rotation to Atomic Physics (Cambridge Univ. Press, 2018).

  • Levine, J., Tavella, P. & Milton, M. Towards a consensus on a continuous coordinated universal time. Metrologia 60, 014001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Nelson, R. A. et al. The leap second: its history and possible future. Metrologia 38, 509–529 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Loomis, B. D., Rachlin, K. E. & Luthcke, S. B. Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett. 46, 6910–6917 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, M. & Ries, J. C20 and C30 variations from SLR for GRACE/GRACE-FO science applications. J. Geophys. Res. Solid Earth 128, e2022JB025459 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lombardi, M. A., Novick, A. N., Neville-Neil, G. & Cooke, B. Accurate, traceable, and verifiable time synchronization for world financial markets. J. Res. Natl Inst. Stand. Technol. 121, 436–463 (2016).

  • Addomine, M. in A General History of Horology (eds Turner, A. et al.) 137–152 (Oxford Univ. Press, 2022).

  • Glennie, P. & Thrift, N. Shaping the Day: A History of Timekeeping in England and Wales 1300–1800 (Oxford Univ. Press, 2009).

  • Kinns, R. Visual time signals for mariners between their introduction and 1947: a new perspective. J. Astron. Hist. Herit. 25, 601–713 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ellis, W. Lecture on the Greenwich system of time signals. Horol. J. 7, 85–91, 97–102, 109–114, 121–124 (1865).


    Google Scholar
     

  • Nye, J. & Rooney, D. in A General History of Horology (eds Turner, A. et al.) 495–531 (Oxford Univ. Press, 2022).

  • Nelson, G. K., Lombardi, M. A. & Okayama, D. T. NIST time and frequency radio stations: Www, WWVH, and WWVB. NIST Special Publication 250-67 (U.S. Department of Commerce, 2005).

  • Agnew, D. C. Time marks and clock corrections: a century of seismological timekeeping. Seismol. Res. Let. 91, 1417–1429 (2020).

    Article 

    Google Scholar
     

  • Bullard, E. C. An atomic standard of frequency and time interval: definition of the second of time. Nature 176, 282 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Guinot, B. & Arias, E. F. Atomic time-keeping from 1955 to the present. Metrologia 42, S20–S30 (2005).

    Article 

    Google Scholar
     

  • Leschiutta, S. The definition of the ‘atomic’ second. Metrologia 42, S10–S19 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Munk, W. H. & McDonald, G. The Rotation of the Earth: A Geophysical Discussion (Cambridge Univ. Press, 1960).

  • Ray, R. D. & Erofeeva, S. Y. Long-period tidal variations in the length of day. J. Geophys. Res. 119, 1498–1509 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gross, R. S. in Treatise on Geophysics: Geodesy (ed. Herring, T. A.) 215–261 (Elsevier, 2015).

  • Haigh, I. D. et al. The tides they are a-changin’: a comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Rev. Geophys. 58, e2018RG000636 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Williams, J. G. & Boggs, D. H. Secular tidal changes in lunar orbit and Earth rotation. Celest. Mech. Dyn. Astron. 126, 89–129 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Whitehouse, P. L. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf. Dynam. 6, 401–429 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Peltier, W. R., Wu, P. P.-C., Argus, D. F., Li, T. & Velay-Vitow, J. Glacial isostatic adjustment: physical models and observational constraints. Rep. Prog. Phys. 85, 096801 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mitrovica, J. et al. Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma. Sci. Adv. 1, e1500679 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, A. J. et al. Ice age effects on the satellite-derived ({dot{J}}_{2}) datum: mapping the sensitivity to 3D variations in mantle viscosity. Earth Planet. Sci. Lett. 581, 117372 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seago, J. H. in Requirements for UTC and Civil Timekeeping on Earth (eds Seago, J. H. et al.) 107–125 (Univelt, American Astronautical Society, 2013).

  • Cheng, M., Tapley, B. & Ries, J. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 118, 740–747 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lau, H. C. P. et al. Inferences of mantle viscosity based on ice age data sets: Radial structure. J. Geophys. Res. Solid Earth 121, 6991–7012 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mitrovica, J. X. & Peltier, W. R. Present-day secular variations in the zonal harmonics of Earth’s geopotential. J. Geophys. Res. Solid Earth 98, 4509–4526 (1993).

    Article 

    Google Scholar
     

  • Cox, C. M. & Chao, B. F. Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297, 831–833 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy, K. & Peltier, W. R. GRACE era secular trends in Earth rotation parameters: a global scale impact of the global warming process? Geophys. Res. Lett. L10306 (2011).

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  • Barnoud, A. et al. Revisiting the global mean ocean mass budget over 2005–2020. Ocean Sci. 19, 321–334 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, C. The Hill-Brown Theory of the Moon’s Motion: Its Coming-to-Be and Short-Lived Ascendancy (1877–1984) (Springer, 2010).

  • Kono, M. (ed.) Treatise on Geophysics, Vol. 5: Geomagnetism (series ed. Schubert, G.) (Elsevier, 2015).

  • Olson, P. (ed.) Treatise on Geophysics, Vol. 8: Core Dynamics (series ed. Schubert, G.) (Elsevier, 2015).

  • Langbein, J. Methods for rapidly estimating velocity precision from GNSS time series in the presence of temporal correlation: A new method and comparison of existing methods. J. Geophys. Res. Solid Earth 125, e2019JB019132 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Constable, C. & Constable, S. A grand spectrum of the geomagnetic field. Phys. Earth Planet. Inter. 344, 107090 (2023).

    Article 

    Google Scholar
     

  • Stephenson, F. R., Morrison, L. V. & Hohenkerk, C. Y. Measurement of the Earth’s rotation: 720 BC to AD 2015. Proc. R. Soc. A 472, 20160404 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber, P. J. Modeling the length of day and extrapolating the rotation of the Earth. J. Geod. 80, 283–303 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Morrison, L. V., Stephenson, F. R., Hohenkerk, C. Y. & Zawilski, M. Addendum 2020 to ‘Measurement of the Earth’s rotation: 720 BC to AD 2015’. Proc. R. Soc. A 477, 20200776 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bell, S. A., Bangert, J. A. & Kaplan, G. H. in The History of Celestial Navigation: Rise of the Royal Observatory and Nautical Almanacs (eds Seidelmann, P. K. & Hohenkerk, C. Y.) 263–311 (Springer, 2020).

  • Burnicki, M. in Requirements for UTC and Civil Timekeeping on Earth (eds Seago, J. H. et al.) 35–46 (Univelt, American Astronautical Society, 2013).

  • Seidelmann, P. K. & Seago, J. H. Time scales, their users, and leap seconds. Metrologia 48, S186–S194 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Seago, J. H., Seaman, R. L., Seidelmann, P. K. & Allen, S. L. (eds) Requirements for UTC and Civil Timekeeping on Earth (Univelt, American Astronautical Society, 2013).

  • Birth, K. in Law and Time (eds Benyon-Jones, S. M. & Grabham, E.) 196–211 (Routledge, 2018).

  • Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).


    Google Scholar
     

  • Johnson, H. & Agnew, D. C. Monument motion and measurements of crustal velocities. Geophys. Res. Lett. 22, 2905–2908 (1995).

    Article 
    ADS 

    Google Scholar
     



  • Source link