A recently formed ocean inside Saturn’s moon Mimas – Nature

    0
    1
    A recently formed ocean inside Saturn’s moon Mimas – Nature


  • Castillo-Rogez, J. et al. Compositions and interior structures of the large moons of Uranus and implications for future spacecraft observations. J. Geophys. Res. Planets 128, e2022JE007432 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ćuk, M., Dones, L. & Nesvorný, D. Dynamical evidence for a late formation of Saturn’s moons. Astrophys. J. 820, 97 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rhoden, A. R. & Walker, M. E. The case for an ocean-bearing Mimas from tidal heating analysis. Icarus 376, 114872 (2022).

    Article 

    Google Scholar
     

  • Tajeddine, R. et al. Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346, 322–324 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borderies, N. & Yoder, C. F. Phobos’ gravity field and its influence on its orbit and physical librations. Astron. Astrophys. 233, 235–251 (1990).

    ADS 

    Google Scholar
     

  • Lainey, V., Rambaux, N., Cooper, N. & Zhang, Q. Characterizing the interior of five inner Saturnian moons using Cassini ISS data. Astron. Astrophys. 670, L25 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Viswanathan, V., Rambaux, N., Fienga, A., Laskar, J. & Gastineau, M. Observational constraint on the radius and oblateness of the lunar core–mantle boundary. Geophys. Res. Lett. 46, 7295–7303 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Balmino, G. Gravitational potential harmonics from the shape of an homogeneous body. Celest. Mech. Dyn. Astron. 60, 331–364 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A. & Sotin, C. Titan’s internal structure inferred from a coupled thermal–orbital model. Icarus 175, 496–502 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tobie, G., Mocquet, A. & Sotin, C. Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177, 534–549 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Cadek, O. et al. Long-term stability of Enceladus’ uneven ice shell. Icarus 319, 476–484 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ćuk, M. & El Moutamid, M. Three-body resonances in the Saturnian system. Astrophys. J. 926, L18 (2022).

  • Baillié, K., Noyelles, B., Lainey, V., Charnoz, S. & Tobie, G. Formation of the Cassini Division—I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486, 2933–2946 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Noyelles, B., Baillié, K., Charnoz, S., Lainey, V. & Tobie, G. Formation of the Cassini Division—II. Possible histories of Mimas and Enceladus. Mon. Not. R. Astron. Soc. 486, 2947–2963 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wisdom, J. et al. Loss of a satellite could explain Saturn’s obliquity and young rings. Science 377, 1285–1289 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Lainey, V. et al. Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752, 14 (2012).

  • Lainey, V. et al. New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lainey, V. et al. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nat. Astron. 4, 1053–1058 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zandanel, A. et al. Short lifespans of serpentinization in the rocky core of Enceladus: implications for hydrogen production. Icarus 364, 114461 (2021).

  • Zandanel, A. et al. Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nat. Astron. 6, 554–559 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cooper, N. J. et al. The Caviar software package for the astrometric reduction of Cassini ISS images: description and examples. Astron. Astrophys. 610, A2 (2018).

    Article 

    Google Scholar
     

  • Rambaux, N., Lainey, V., Cooper, N., Auzemery, L. & Zhang, Q. F. Spherical harmonic decomposition and interpretation of the shapes of the small Saturnian inner moons. Astron. Astrophys. 667, A78 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q. F. et al. A comparison of centring algorithms in the astrometry of Cassini imaging science subsystem images and Anthe’s astrometric reduction. Mon. Not. R. Astron. Soc. 505, 5253–5259 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Iess, L. et al. Measurement and implications of Saturn’s gravity field and ring mass. Science 364, aat2965 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Iess, L. et al. The tides of Titan. Science 337, 457–459 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Militzer, B. & Hubbard, W. Relation of gravity, winds, and the moment of inertia of Jupiter and Saturn. Planet. Sci. J. 4, 95 (2023).

  • French, R. G. et al. Astrometry of Saturn’s satellites from the Hubble Space Telescope WFPC2. Publ. Astron. Soc. Pac. 118, 246–259 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Jacobson, R. A. The orbits and masses of the Martian satellites and the libration of Phobos. Astron. J 139, 668–679 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lainey, V. et al. Interior properties of the inner Saturnian moons from space astrometry data. Icarus 326, 48–62 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Van Hoolst, T., Rambaux, N., Karatekin, Ö., Dehant, V. & Rivoldini, A. The librations, shape, and icy shell of Europa. Icarus 195, 386–399 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Rambaux, N., van Hoolst, T. & Karatekin, Ö. Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit. Astron. Astrophys. 527, A118 (2011).

    Article 

    Google Scholar
     

  • Richard, A., Rambaux, N. & Charnay, B. Librational response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and atmospheric couplings. Planet. Space Sci. 93, 22–34 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Xu, S. & Szeto, A. M. K. Gravitational coupling in the Earth’s interior revisited. Geophys. J. Int. 118, 94–100 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Thomas, P. C. et al. Shapes of the Saturnian icy satellites and their significance. Icarus 190, 573–584 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Castillo-Rogez, J. C., Efroimsky, M. & Lainey, V. The tidal history of Lapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res. 116, E09008 (2011).

    ADS 

    Google Scholar
     

  • Saito, M. Some problems of static deformation of the Earth. J. Phys. Earth 22, 123–140 (1974).

    Article 

    Google Scholar
     

  • Takeushi, H. & Saito, M. in Methods in Computational Physics Vol. 1 (ed. Bolt, B. A.) 217–295 (Academic Press, 1972).

  • Grasset, O. & Pargamin, J. The ammonia water system at high pressures: implications for the methane of Titan. Planet. Space Sci. 53, 371–384 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link