A rechargeable calcium–oxygen battery that operates at room temperature – Nature

    0
    1
    A rechargeable calcium–oxygen battery that operates at room temperature – Nature


  • Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hou, S. et al. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 5, 276–294 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Arroyo-de Dompablo, M. E., Ponrouch, A., Johansson, P. & Palacin, M. R. Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120, 6331–6357 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, H. & Wang, C. Current status and challenges of calcium metal batteries. Adv. Energy Sustain. Res. 3, 2100192 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16–20 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, H. et al. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5, 1043–1050 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponrouch, A., Frontera, C., Bardé, F. & Palacín, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Neale, A. R., Hu, C. & Hardwick, L. J. Divalent nonaqueous metal-air batteries. Front. Energy Res. 8, 602918 (2021).

    Article 

    Google Scholar
     

  • Wang, M. et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forero-Saboya, J. et al. Understanding the nature of the passivation layer enabling reversible calcium plating. Energy Environ. Sci. 13, 3423–3431 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao-Karger, Z. et al. Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature. Nat. Commun. 13, 3849 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jie, Y. et al. Electrolyte solvation manipulation enables unprecedented room-temperature calcium-metal batteries. Angew. Chem. Int. Ed. 59, 12689–12693 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. Energy Environ. Sci. 13, 2559–2569 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Asadi, M. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chi, X. et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592, 551–557 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pujare, N. U., Semkow, K. W. & Sammells, A. F. A calcium oxygen secondary battery. J. Electrochem. Soc. 135, 260–261 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Shiga, T., Kato, Y. & Hase, Y. Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium-oxygen battery. J. Mater. Chem. A 5, 13212–13219 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, T., Zhang, X,-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z., Fuhr, O., Fichtner, M. & Zhao-Karger, Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci. 12, 3496–3501 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lai, J. et al. Electrolytes for rechargeable lithium–air batteries. Angew. Chem. Int. Ed. 59, 2974–2997 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ye, L. et al. Stabilizing lithium into cross-stacked nanotube sheets with an ultra-high specific capacity for lithium oxygen batteries. Angew. Chem. Int. Ed. 58, 2437–2442 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nishioka, K. et al. Isotopic depth profiling of discharge products identifies reactive interfaces in an aprotic Li–O2 battery with a redox mediator. J. Am. Chem. Soc. 143, 7394–7401 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, H. et al. An improved high-performance lithium–air battery. Nat. Chem. 4, 579–585 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondori, A. et al. A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 379, 499–505 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shyamsunder, A., Blanc, L. E., Assoud, A. & Nazar, L. F. Reversible calcium plating and stripping at room temperature using a borate salt. ACS Energy Lett. 4, 2271–2276 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ko, S., Yamada, Y. & Yamada, A. An overlooked issue for high-voltage Li-ion batteries: suppressing the intercalation of anions into conductive carbon. Joule 5, 998–1009 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. et al. A renaissance of N,N-dimethylacetamide-based electrolytes to promote the cycling stability of Li–O2 batteries. Energy & Environ. Sci. 13, 3075–3081 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Feng, S. et al. Molecular design of stable sulfamide- and sulfonamide-based electrolytes for aprotic Li-O2 batteries. Chem 5, 2630–2641 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1998).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Liu, Q. et al. Interlocked CNT networks with high damping and storage modulus. Carbon 86, 46–53 (2015).

    Article 
    CAS 

    Google Scholar
     

  • He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, M. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link