Controlling the helicity of light by electrical magnetization switching – Nature

    0
    Controlling the helicity of light by electrical magnetization switching – Nature


  • Waser, R. (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 3rd edn (Wiley-VCH, 2012).

  • Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article 

    Google Scholar
     

  • Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article 

    Google Scholar
     

  • Giba, A. E. et al. Spin injection and relaxation in p-doped (In,Ga)As/GaAs quantum-dot spin light-emitting diodes at zero magnetic field. Phys. Rev. Appl. 14, 034017 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liang, S. H. et al. Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector. Phys. Rev. B 90, 085310 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gerhardt, N. C. et al. Electron spin injection into GaAs from ferromagnetic contacts in remanence. Appl. Phys. Lett. 87, 032502 (2005).

    Article 

    Google Scholar
     

  • Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra, R., Kim, T., Park, J. & Yang, H. Shared-write-channel-based device for high-density spin-orbit-torque magnetic random-access memory. Phys. Rev. Appl. 15, 024063 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lindemann, M. et al. Ultrafast spin-lasers. Nature 568, 212–215 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sandvine. The Global Internet Phenomena Report: COVID-19 Spotlight https://go.nature.com/49HrzWl (2020).

  • Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dery, H. et al. Spintronic nanoelectronics based on magneto-logic gates. IEEE Trans. Electron. Dev. 59, 259–262 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Vagionas, C. et al. Optical memory architectures for fast routing address look-up (AL) table operation. J. Phys. Photon. 1, 044005 (2019).

    Article 

    Google Scholar
     

  • Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhan, X. et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater. 33, 202104418 (2021).

    Article 

    Google Scholar
     

  • Nishizawa, N. & Munekata, H. Lateral-type spin-photonics devices: development and applications. Micromachines 12, 644–675 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Žutić, I. et al. Spin-lasers: spintronics beyond magnetoresistance. Solid State Commun. 316–317, 113949 (2020).

    Article 

    Google Scholar
     

  • Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, I. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marin, J. F. G. et al. Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun. 13, 4884 (2022).

    Article 

    Google Scholar
     

  • Nishizawa, N., Nishibayashi, K. & Munekata, H. A spin light emitting diode incorporating ability of electrical helicity switching. Appl. Phys. Lett. 104, 111102 (2014).

    Article 

    Google Scholar
     

  • Yokota, N., Nisaka, K., Yasaka, H. & Ikeda, K. Spin polarization modulation for high-speed vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 113, 171102 (2018).

    Article 

    Google Scholar
     

  • Sinova, J. & Žutić, I. New moves of the spintronics tango. Nat. Mater. 11, 368–371 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holub, M., Shin, J., Saha, D. & Bhattacharya, P. Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98, 146603 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsymbal, E. Y. & Žutić, I. Spintronics Handbook: Spin Transport and Magnetism 2nd edn (CRC Press, Boca Raton, FL, 2019).

  • Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).

    Article 

    Google Scholar
     

  • Li, H. et al. Field-free deterministic magnetization switching with ultralow current density in epitaxial Au/Fe4N bilayer films. ACS Appl. Mater. Interfaces 11, 16965–16971 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Brink, A. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article 

    Google Scholar
     

  • Fang, C. et al. Observation of the fluctuation spin Hall effect in a low-resistivity antiferromagnet. Nano Lett. 23, 11485–11492 (2023).

  • Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).

    Article 

    Google Scholar
     

  • Xie, H. et al. Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures. Chin. Phys. 32, 037502 (2023).

    Article 

    Google Scholar
     

  • Kumar, S. & Kumar, S. Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures. Nat. Commun. 14, 8185 (2023).

  • Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013).

    Article 

    Google Scholar
     

  • Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahaman, S. Z. et al. Pulse-width and temperature effect on the switching behavior of an etch-stop-on-MgO-barrier spin-orbit torque MRAM cell. IEEE Electron Device Lett. 39, 1306–1309 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Vernier, N., Zhao, W., Vila, L. & Ravelosona, D. Extrinsic pinning of magnetic domain walls in CoFeB-MgO nanowires with perpendicular anisotropy. AIP Adv. 8, 056307 (2018).

    Article 

    Google Scholar
     

  • Barate, P. et al. Bias dependence of the electrical spin injection into GaAs from Co–Fe–B/MgO injectors with different MgO growth processes. Phys. Rev. Appl. 8, 054027 (2017).

    Article 

    Google Scholar
     

  • Iba, S., Koh, S., Ikeda, K. & Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 98, 081113 (2011).

    Article 

    Google Scholar
     

  • Frougier, J. et al. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers. Appl. Phys. Lett. 103, 252402 (2013).

    Article 

    Google Scholar
     

  • Diamanti, E., Lo, H.-K., Qi, B. & Yuan, Z. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016).

    Article 

    Google Scholar
     

  • Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    Article 

    Google Scholar
     

  • Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belhadj, T. et al. Controlling the polarization eigenstate of a quantum dot exciton with light. Phys. Rev. Lett. 103, 086601 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Braun, P. F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Tao, B. et al. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence. Nanoscale 10, 10213–10220 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cadiz, F. et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 18, 2381–2386 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Depth analysis of boron diffusion in MgO/CoFeB bilayer by X-ray photoelectron spectroscopy. J. Appl. Phys. 108, 043703 (2010).

    Article 

    Google Scholar
     

  • Liu, B. et al. Spin injection probed by combined optical and electrical techniques in spin-LED. Phys. Status. Solidi. (c) 1, 475–478 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K.-M., Choi, J. W., Sok, J. & Min, B.-C. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO. AIP Adv. 7, 065107 (2017).

    Article 

    Google Scholar
     

  • Huang, S. X., Chen, T. Y. & Chien, C. L. Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection. Appl. Phys. Lett. 92, 242509 (2008).

    Article 

    Google Scholar
     

  • Barate, P. et al. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods. Appl. Phys. Lett. 105, 012404 (2014).

    Article 

    Google Scholar
     

  • Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article 

    Google Scholar
     

  • Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Spin-orbit coupling effect by minority interface resonance states in single-crystal magnetic tunnel junctions. Phys. Rev. B 86, 184420 (2012).

  • Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link