Electron holography observation of individual ferrimagnetic lattice planes – Nature

    0


  • Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibata, N. et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428, 730–733 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rusz, J. et al. Magnetic measurements with atomic-plane resolution. Nat. Commun. 7, 12672 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Idrobo, J. C. et al. Detecting magnetic ordering with atomic size electron probes. Adv. Struct. Chem. Imaging 2, 5 (2016).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Atomic scale imaging of magnetic circular chichroism by achromatic electron microscopy. Nat. Mater. 21, 221–225 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-S. et al. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat. Mater. 12, 703–706 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhu, X. H. et al. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proc. Natl Acad. Sci. USA 113, E8219–E8227 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiesendanger, R. et al. Topographic and magnetic-sensitive scanning tunneling microscopy study of magnetite. Science 255, 583–586 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 294, 1488–1495 (2001).


    Google Scholar
     

  • Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanigaki, T. et al. Magnetic field observations in CoFeB/Ta layers with 0.67-nm resolution by electron holography. Sci. Rep. 7, 16598 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schattschneider, P. et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirota, K., Yonezawa, A., Shibatomi, K. & Yanaka, T. Ferro-magnetic material observation lens system for CTEM with a eucentric goniometer. J. Electron Microsc. 25, 303–304 (1976).


    Google Scholar
     

  • Harada, K. et al. Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51–53 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Schofield, M. A., Beleggia, M., Zhu, Y. & Pozzi, G. Characterization of JEOL 2100 F Lorentz-TEM for low-magnification electron holography and magnetic imaging. Ultramicroscopy 108, 625–634 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunin-Borkowski, R. E. et al. Opportunities for chromatic aberration corrected high-resolution transmission electron microscopy, Lorentz microscopy and electron holography of magnetic minerals. Microsc. Microanal. 18, 1708–1709 (2012).

    Article 

    Google Scholar
     

  • Snoeck, E. et al. Off-axial aberration correction using a B-COR for Lorentz and HREM modes. Microsc. Microanal. 20, 932–933 (2014).

    Article 

    Google Scholar
     

  • O’Shea, K. J. et al. Nanoscale mapping of the magnetic properties of (111)-oriented La0.67Sr0.33MnO3. Nano Lett. 15, 5868–5874 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gatel, C. et al. Size-specific spin configurations in single iron nanomagnet: from flower to exotic vortices. Nano Lett. 15, 6952–6957 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagai, T., Kimoto, K., Inoke, K. & Takeguchi, M. Real-space observation of nanoscale magnetic phase separation in dysprosium by aberration-corrected Lorentz microscopy. Phys. Rev. B 96, 100405 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tanigaki, T., Akashi, T., Takahashi, Y., Kawasaki, T. & Shinada, H. Quest for ultimate resolution using coherent electron waves: an aberration-corrected high-voltage electron microscope. Adv. Imaging Electron Phys. 198, 69–125 (2016).

    Article 

    Google Scholar
     

  • Shibata, N. et al. Atomic resolution electron microscopy in a magnetic field free environment. Nat. Commun. 10, 2308 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akashi, T. et al. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution. Appl. Phys. Lett. 106, 074101 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tomioka, Y. et al. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Phys. Rev. B 61, 442–427 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. B., Lee, B. W. & Kim, C. S. Neutron and Mössbauer studies of the double perovskite A2FeMoO6 (A = Sr and Ba). J. Magn. Magn. Mater. 242–245, 747–750 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Yu, X. et al. TEM study of the influence of antisite defects on magnetic domain structures in double perovskite Ba2FeMoO6. J. Electron Microsc. 54, 61–65 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sahnoun, O., Bouhani-Benziane, H., Sahnoun, M. & Driz, M. Magnetic and thermoelectric properties of ordered double perovskite Ba2FeMoO6. J Alloy. Compd. 714, 704–708 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tamura, T., Kimura, Y. & Takai, Y. Development of a real-time wave field reconstruction TEM system (I): incorporation of an auto focus tracking system. Microscopy 66, 172–181 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Tonomura, A. Electron-holographic interference microscopy. Adv. Phys. 41, 59–103 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Harada, K., Tonomura, A., Togawa, Y., Akashi, T. & Matsuda, T. Double-biprism electron interferometry. Appl. Phys. Lett. 84, 3229–3231 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Voelkl, E. & Tang, D. Approaching routine 2π/1000 phase resolution for off-axis type holography. Ultramicroscopy 110, 447–459 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, T. et al. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography. Ultramicroscopy 118, 21–25 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boureau, V. et al. High-sensitivity mapping of magnetic induction fields with nanometer-scale resolution: comparison of off-axis electron holography and pixelated differential phase contrast. J. Phys. D: Appl. Phys. 54, 085001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tonomura, A. Electron Holography (Springer, 1999).

  • Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohn, A., Petford-Long, A. K. & Anthony, T. C. Magnetic potential in patterned materials determined using energy-dependent Lorentz phase microscopy. Phys. Rev. B 72, 014444 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Genz, F., Niermann, T., Buijsse, B., Freitag, B. & Lehmann, M. Advanced double-biprism holography with atomic resolution. Ultramicroscopy 147, 33–43 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taniguchi, Y., Takai, Y., Ikuta, T. & Shimizu, R. Correction of spherical aberration in HREM image using defocus-modulation image processing. J. Electron Microsc. 41, 21–29 (1992).


    Google Scholar
     

  • Mayer, R. R., Kirkland, A. I. & Saxton, W. O. A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89–109 (2002).

    Article 

    Google Scholar
     

  • Brigham, E. O. The Fast Fourier Transform (Prentice-Hall, 1974).

  • Ishizuka, K. & Uyeda, N. A new theoretical and practical approach to the multislice method. Acta Crystallogr. Sect. A: Found. Adv. A33, 740–749 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dunin-Borkowski, R. E., McCartney, M. R., Smith, D. J. & Parkin, S. S. P. Towards quantitative electron holography of magnetic thin films using in situ magnetization reversal. Ultramicroscopy 74, 61–73 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mansuripur, M. Computation of electron-diffraction patterns in Lorentz electron microscopy of thin magnetic films. J. Appl. Phys. 69, 2455–2464 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mansuripur, M. Computation of electron-diffraction patterns in Lorentz electron microscopy of thin magnetic films (abstract). J. Appl. Phys. 69, 5890 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Beleggia, M., Fazzini, P. F. & Pozzi, G. A Fourier approach to fields and electron optical phase-shifts calculations. Ultramicroscopy 96, 93–103 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link