Evidence for chiral graviton modes in fractional quantum Hall liquids – Nature

    0
    Evidence for chiral graviton modes in fractional quantum Hall liquids – Nature


  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett. 107, 116801 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B., Hu, Z.-X., Papić, Z. & Haldane, F. D. M. Model wave functions for the collective modes and the magnetoroton theory of the fractional quantum hall effect. Phys. Rev. Lett. 108, 256807 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Son, D. T. Newton-Cartan geometry and the quantum Hall effect. Preprint at https://arxiv.org/abs/1306.0638 (2013).

  • Golkar, S., Nguyen, D. X. & Son, D. T. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect. J. High Energy Phys. 2016, 21 (2016).

  • Liou, S.-F., Haldane, F. D. M., Yang, K. & Rezayi, E. H. Chiral gravitons in fractional quantum hall liquids. Phys. Rev. Lett. 123, 146801 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, D. X. & Son, D. T. Probing the spin structure of the fractional quantum Hall magnetoroton with polarized Raman scattering. Phys. Rev. Res. 3, 023040 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, D. X., Haldane, F. D. M., Rezayi, E. H., Son, D. T. & Yang, K. Multiple magnetorotons and spectral sum rules in fractional quantum hall systems. Phys. Rev. Lett. 128, 246402 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Collective-excitation gap in the fractional quantum Hall effect. Phys. Rev. Lett. 54, 581–583 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinczuk, A., Dennis, B. S., Pfeiffer, L. N. & West, K. Observation of collective excitations in the fractional quantum Hall effect. Phys. Rev. Lett. 70, 3983–3986 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K. Geometry of compressible and incompressible quantum Hall states: application to anisotropic composite-fermion liquids. Phys. Rev. B 88, 241105 (2013).

    Article 

    Google Scholar
     

  • Maciejko, J., Hsu, B., Kivelson, S. A., Park, Y. & Sondhi, S. L. Field theory of the quantum Hall nematic transition. Phys. Rev. B 88, 125137 (2013).

    Article 

    Google Scholar
     

  • You, Y., Cho, G. Y. & Fradkin, E. Theory of nematic fractional quantum hall states. Phys. Rev. X 4, 041050 (2014).


    Google Scholar
     

  • Luo, X., Wu, Y.-S. & Yu, Y. Noncommutative Chern–Simons theory and exotic geometry emerging from the lowest Landau level. Phys. Rev. D 93, 125005 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Johri, S., Papić, Z., Schmitteckert, P., Bhatt, R. N. & Haldane, F. D. M. Probing the geometry of the Laughlin state. New J. Phys. 18, 025011 (2016).

    Article 

    Google Scholar
     

  • Gromov, A. & Son, D. T. Bimetric theory of fractional quantum Hall states. Phys. Rev. X 7, 041032 (2017).


    Google Scholar
     

  • Yang, B. Microscopic theory for nematic fractional quantum Hall effect. Phys. Rev. Res. 2, 033362 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M., Rezayi, E. H. & Yang, K. Graviton chirality and topological order in the half-filled landau level. Phys. Rev. B 104, L121106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Balram, A. C., Liu, Z., Gromov, A. & Papić, Z. Very-high-energy collective states of partons in fractional quantum hall liquids. Phys. Rev. X 12, 021008 (2022).

    CAS 

    Google Scholar
     

  • Wang, Y. & Yang, B. Geometric fluctuation of conformal Hilbert spaces and multiple graviton modes in fractional quantum Hall effect. Nat. Commun. 14, 2317 (2023).

    Article 

    Google Scholar
     

  • Kirmani, A. et al. Probing geometric excitations of fractional quantum hall states on quantum computers. Phys. Rev. Lett. 129, 056801 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farjami, A., Horner, M. D., Self, C. N., Papić, Z. & Pachos, J. K. Geometric description of the Kitaev honeycomb lattice model. Phys. Rev. B 101, 245116 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).

  • Davies, H. D. M., Harris, J. C., Ryan, J. F. & Turberfield, A. J. Spin and charge density excitations and the collapse of the fractional quantum Hall state at v = 1/3. Phys. Rev. Lett. 78, 4095–4098 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M., Pinczuk, A., Dennis, B. S., Pfeiffer, L. N. & West, K. W. Observation of multiple magnetorotons in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 2637–2640 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarola, V. W., Park, K. & Jain, J. K. Rotons of composite fermions: comparison between theory and experiment. Phys. Rev. B 61, 13064–13072 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Platzman, P. M. & He, S. Resonant Raman scattering from mobile electrons in the fractional quantum Hall regime. Phys. Rev. B 49, 13674–13679 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Fierz, M. & Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. London, Ser. A 173, 211–232 (1939).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bergshoeff, E. A., Hohm, O. & Townsend, P. K. Massive gravity in three dimensions. Phys. Rev. Lett. 102, 201301 (2009).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Bergshoeff, E. A., Rosseel, J. & Townsend, P. K. Gravity and the spin-2 planar Schrödinger equation. Phys. Rev. Lett. 120, 141601 (2018).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Kang, M. et al. Inelastic light scattering by gap excitations of fractional quantum Hall states at 1/3 ≤ v ≤ 2/3. Phys. Rev. Lett. 84, 546–549 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wurstbauer, U., West, K. W., Pfeiffer, L. N. & Pinczuk, A. Resonant inelastic light scattering investigation of low-lying gapped excitations in the quantum fluid at v = 5/2. Phys. Rev. Lett. 110, 026801 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, L. et al. Observation of new plasmons in the fractional quantum Hall effect: interplay of topological and nematic orders. Sci. Adv. 5, eaav3407 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Domain textures in the fractional quantum Hall effect. Phys. Rev. Lett. 128, 017401 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312–7343 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Simon, S. H. & Halperin, B. I. Finite-wave-vector electromagnetic response of fractional quantized Hall states. Phys. Rev. B 48, 17368–17387 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Léonard, J. et al. Realization of a fractional quantum Hall state with ultracold atoms. Nature 619, 495–499 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirjibehedin, C. F. et al. Splitting of long-wavelength modes of the fractional quantum Hall liquid at v = 1/3. Phys. Rev. Lett. 95, 066803 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhone, T. D. et al. Higher-energy composite fermion levels in the fractional quantum Hall effect. Phys. Rev. Lett. 106, 096803 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Gallais, Y., Yan, J., Pinczuk, A., Pfeiffer, L. N. & West, K. W. Soft spin wave near v = 1: evidence for a magnetic instability in Skyrmion Systems. Phys. Rev. Lett. 100, 086806 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, F. C. & Sarma, S. D. Excitation gap in the fractional quantum Hall effect: finite layer thickness corrections. Phys. Rev. B 33, 2903–2906 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Park, K. & Jain, J. K. Two-roton bound state in the fractional quantum Hall effect. Phys. Rev. Lett. 84, 5576–5579 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, T. K. & Baskaran, G. Modeling two-roton bound state formation in the fractional quantum Hall system. Phys. Rev. Lett. 87, 186803 (2001).

    Article 

    Google Scholar
     

  • Goldberg, B. B. et al. Optical transmission spectroscopy of the two-dimensional electron gas in GaAs in the quantum hall regime. Phys. Rev. B 38, 10131–10134 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Hirjibehedin, C. F. et al. Resonant enhancement of inelastic light scattering in the fractional quantum Hall regime at v = 1/3. Solid State Commun. 127, 799–803 (2003).

    Article 
    CAS 

    Google Scholar
     



  • Source link