Expanding chemistry through in vitro and in vivo biocatalysis – Nature

    0
    Expanding chemistry through in vitro and in vivo biocatalysis – Nature


  • Hafner, J., MohammadiPeyhani, H., Sveshnikova, A., Scheidegger, A. & Hatzimanikatis, V. Updated ATLAS of biochemistry with new metabolites and improved enzyme prediction power. ACS Synth. Biol. 9, 1479–1482 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koeller, K. M. & Wong, C.-H. Enzymes for chemical synthesis. Nature 409, 232–240 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hönig, M., Sondermann, P., Turner, N. J. & Carreira, E. M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56, 8942–8973 (2017).


    Google Scholar
     

  • Romero, E. et al. Enzymatic late-stage modifications: better late than never. Angew. Chem. Int. Ed. 60, 16824–16855 (2021).

    CAS 

    Google Scholar
     

  • Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    CAS 

    Google Scholar
     

  • Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010). This work was a landmark in the field, highlighting the utility of transaminases for the preparation of chiral amines and its impact in reducing cost and waste generation at the commercial production scale of sitagliptin at Merck.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS 

    Google Scholar
     

  • Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bergman, R. G. C–H activation. Nature 446, 391–393 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, M. C. Y. & Keasling, J. D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2, 674–681 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Stout, C. N. & Renata, H. Reinvigorating the chiral pool: chemoenzymatic approaches to complex peptides and terpenoids. Acc. Chem. Res. 54, 1143–1156 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 96, 2841–2888 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Guengerich, F. P. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 8, 10964–10976 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. Fungal cytochrome P450 database. BMC Genomics 9, 402 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. PCPD: plant cytochrome P450 database and web-based tools for structural construction and ligand docking. Synth. Syst. Biotechnol. 6, 102–109 (2021).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narayan, A. R. H. et al. Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nat. Chem. 7, 653–660 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gally, C., Nestl, B. M. & Hauer, B. Engineering Rieske non-heme iron oxygenases for the asymmetric dihydroxylation of alkenes. Angew. Chem. Int. Ed. 54, 12952–12956 (2015).

    CAS 

    Google Scholar
     

  • Zhang, K., El Damaty, S. & Fasan, R. P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity. J. Am. Chem. Soc. 133, 3242–3245 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, F., Deng, H. & Renata, H. Remote B-ring oxidation of sclareol with an engineered P450 facilitates divergent access to complex terpenoids. J. Am. Chem. Soc. 144, 7616–7621 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Paddon, C. J. & Keasling, J. D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355–367 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Glenn, W. S., Nims, E. & O’Connor, S. E. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. J. Am. Chem. Soc. 133, 19346–19349 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Andorfer, M. C., Park, H. J., Vergara-Coll, J. & Lewis, J. C. Directed evolution of RebH for catalyst-controlled halogenation of indole C–H bonds. Chem. Sci. 7, 3720–3729 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. https://doi.org/10.1038/s41589-019-0355-x (2019).

  • Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)- and α-ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C−H bonds. Angew. Chem. Int. Ed. 135, e202301370 (2023).

    ADS 

    Google Scholar
     

  • Neugebauer, M. E. et al. Reaction pathway engineering converts a radical hydroxylase into a halogenase. Nat. Chem. Biol. 18, 171–179 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, A. J. et al. Structure-guided reprogramming of a hydroxylase to halogenate its small molecule substrate. Biochemistry 56, 441–444 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013). This work provided a paradigm for engineering enzymatic reaction chemistry for abiotic synthetic transformations, using insight into organic chemistry to develop diazo regents for delivering elements for P450 group transfer.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 139, 1750–1753 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Complete integration of carbene-transfer chemistry into biosynthesis. Nature 617, 403–408 (2023). This work shows how the discovery of biosynthetic pathways can facilitate the complete biological reproduction of synthetic enzyme chemistry. In this case, the biosynthesis of azaserine and the parallel expression of an engineered P450 enables carbene-transfer chemistry inside of living cells.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kan, S. B. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. Nature 552, 132–136 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354, 1048–1051 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farwell, C. C., McIntosh, J. A., Hyster, T. K., Wang, Z. J. & Arnold, F. H. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer. J. Am. Chem. Soc. 136, 8766–8771 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sreenilayam, G., Moore, E. J., Steck, V. & Fasan, R. Metal substitution modulates the reactivity and extends the reaction scope of myoglobin carbene transfer catalysts. Adv. Synth. Catal. 359, 2076–2089 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., Huang, X., Zhang, R. K. & Arnold, F. H. Enantiodivergent α-amino C–H fluoroalkylation catalyzed by engineered cytochrome P450s. J. Am. Chem. Soc. 141, 9798–9802 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, D. et al. Enantioselective synthesis of α-trifluoromethyl amines via biocatalytic N–H bond insertion with acceptor–acceptor carbene donors. J. Am. Chem. Soc. 144, 2590–2602 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg, N. W., Knight, A. M., Zhang, R. K. & Arnold, F. H. Nitrene transfer catalyzed by a non-heme iron enzyme and enhanced by non-native small-molecule ligands. J. Am. Chem. Soc. 141, 19585–19588 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q. et al. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer. Nat. Synth. https://doi.org/10.1038/s44160-024-00507-7 (2024).

  • Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takayama, S., McGarvey, G. J. & Wong, C.-H. Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51, 285–310 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Schrittwieser, J. H., Velikogne, S., Hall, M. & Kroutil, W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118, 270–348 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Fang, J., Hait, D., Head-Gordon, M. & Chang, M. C. Y. Chemoenzymatic platform for synthesis of chiral organofluorines based on type II aldolases. Angew. Chem. Int. Ed. 58, 11841–11845 (2019).

    CAS 

    Google Scholar
     

  • Fang, J., Turner, L. E. & Chang, M. C. Y. Biocatalytic asymmetric construction of secondary and tertiary fluorides from β-fluoro-α-ketoacids. Angew. Chem. Int. Ed. 61, e202201602 (2022).

    CAS 

    Google Scholar
     

  • Dunn, B. J. & Khosla, C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J. R. Soc. Interface 10, 20130297 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koryakina, I. et al. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases. ACS Chem. Biol. 8, 200–208 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sirirungruang, S. et al. Engineering site-selective incorporation of fluorine into polyketides. Nat. Chem. Biol. 18, 886–893 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rittner, A. et al. Chemoenzymatic synthesis of fluorinated polyketides. Nat. Chem. 14, 1000–1006 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzaferro, L. S., Hüttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc. 137, 12289–12295 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, E. E., Braffman, N. R., Luescher, M. U., Hager, H. H. & Balskus, E. P. Biocatalytic Friedel–Crafts alkylation using a promiscuous biosynthetic enzyme. Angew. Chem. Int. Ed. 58, 3151–3155 (2019).

    CAS 

    Google Scholar
     

  • Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, C., Gillingham, D. G., Ward, T. R. & Hilvert, D. An artificial metalloenzyme for olefin metathesis. Chem. Commun. 47, 12068–12070 (2011).

    CAS 

    Google Scholar
     

  • Abe, S. et al. Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. J. Am. Chem. Soc. 130, 10512–10514 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Filice, M. et al. Preparation of an immobilized lipase-palladium artificial metalloenzyme as catalyst in the Heck reaction: role of the solid phase. Adv. Synth. Catal. 357, 2687–2696 (2015).

    CAS 

    Google Scholar
     

  • Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016). This work shows that artificial metalloenzymes engineered using a tethered synthetic ruthenium catalyst for olefin metathesis can be expressed and evolved in living cells, providing a potential roadmap for evolution of activities using completely abiotic cofactors.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016). This work was a landmark for discovering new modes of enzymatic catalysis, using photocatalysis as a creative approach to generate reactive radical intermediates to carry out interesting and diverse synthetic transformations in an enzyme active site.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anbarasan, P. et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235–239 (2012). This work showed how rethinking mature fermentation processes using chemical ingenuity allows for the scalable production of chemicals. In this case, the products of the acetone–butanol–ethanol fermentation could be combined with Guerbet chemistry to produce mid-chain-length hydrocarbons as biofuels.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. Q. et al. A dual cellular–heterogeneous catalyst strategy for the production of olefins from glucose. Nat. Chem. 13, 1178–1185 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Pyser, J. B. et al. Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J. Am. Chem. Soc. 141, 18551–18559 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ivanenkov, Y. A., Zagribelnyy, B. A. & Aladinskiy, V. A. Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? J. Med. Chem. 62, 10026–10043 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Fink, T. & Reymond, J.-L. Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model. 47, 342–353 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    CAS 

    Google Scholar
     

  • Davison, E. K. & Brimble, M. A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 52, 1–8 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Stone, S., Newman, D. J., Colletti, S. L. & Tan, D. S. Cheminformatic analysis of natural product-based drugs and chemical probes. Nat. Prod. Rep. 39, 20–32 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Garcia de Lomana, M., Friedrich, N.-O. & Kirchmair, J. Characterization of the chemical space of known and readily obtainable natural products. J. Chem. Inf. Model. 58, 1518–1532 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lawson, A. D. G., MacCoss, M. & Heer, J. P. Importance of rigidity in designing small molecule drugs to tackle protein–protein interactions (PPIs) through stabilization of desired conformers. J. Med. Chem. 61, 4283–4289 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Over, B. et al. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem. 5, 21–28 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barelier, S. et al. Increasing chemical space coverage by combining empirical and computational fragment screens. ACS Chem. Biol. 9, 1528–1535 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hert, J., Irwin, J. J., Laggner, C., Keiser, M. J. & Shoichet, B. K. Quantifying biogenic bias in screening libraries. Nat. Chem. Biol. 5, 479–483 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, M.-C., Zou, Y., Watanabe, K., Walsh, C. T. & Tang, Y. Oxidative cyclization in natural product biosynthesis. Chem. Rev. 117, 5226–5333 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Grigalunas, M. et al. Natural product fragment combination to performance-diverse pseudo-natural products. Nat. Commun. 12, 1883 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grigalunas, M., Brakmann, S. & Waldmann, H. Chemical evolution of natural product structure. J. Am. Chem. Soc. 144, 3314–3329 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. S. & Sattely, E. S. Dirigent proteins guide asymmetric heterocoupling for the synthesis of complex natural product analogues. J. Am. Chem. Soc. 143, 5011–5021 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, C. T. et al. Discovery, structure and mechanism of a tetraether lipid synthase. Nature 609, 197–203 (2022).This work demonstrates an interesting mechanism by which two radicals can be generated and coupled using radical SAM enzymes to achieve sp3sp3 coupling.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cacho, R. A., Chooi, Y.-H., Zhou, H. & Tang, Y. Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chem. Biol. 8, 2322–2330 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sib, A. & Gulder, T. A. M. Stereoselective total synthesis of bisorbicillinoid natural products by enzymatic oxidative dearomatization/dimerization. Angew. Chem. Int. Ed. 56, 12888–12891 (2017).

    CAS 

    Google Scholar
     

  • Baker Dockrey, S. A., Lukowski, A. L., Becker, M. R. & Narayan, A. R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018). This work showcases a creative chemical approach to using flavin adenine dinucleotide (FAD)-dependent monooxygenases for oxidative dearomatization as a strategy for creating stereocentres.

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshikuni, Y., Ferrin, T. E. & Keasling, J. D. Designed divergent evolution of enzyme function. Nature 440, 1078–1082 (2006). This work shows how the plasticity of terpene synthase active sites can be utilized to engineer the production of a wide range of different sesquiterpenes.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, L. A., Dunbabin, A., Benton, J. C. R., Mart, R. J. & Allemann, R. K. Modular chemoenzymatic synthesis of terpenes and their analogues. Angew. Chem. 132, 8564–8568 (2020).

    ADS 

    Google Scholar
     

  • Crawford, J. M. et al. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 461, 1139–1143 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    PubMed 

    Google Scholar
     

  • Maresh, J. J. et al. Strictosidine synthase: mechanism of a Pictet−Spengler catalyzing enzyme. J. Am. Chem. Soc. 130, 710–723 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M., Liu, C.-T. & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc. 142, 10506–10515 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutherland, E., Harding, C. J. & Czekster, C. M. Active site remodelling of a cyclodipeptide synthase redefines substrate scope. Commun. Chem. 5, 101 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, B., Wang, S.-A., Ruszczycky, M. W. & Liu, H. Natural [4 + 2]-cyclases. Chem. Rev. 117, 5367–5388 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Jamieson, C. S., Ohashi, M., Liu, F., Tang, Y. & Houk, K. N. The expanding world of biosynthetic pericyclases: cooperation of experiment and theory for discovery. Nat. Prod. Rep. 36, 698–713 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Enzymatic control of endo- and exo-stereoselective Diels–Alder reactions with broad substrate scope. Nat. Catal. 4, 1059–1069 (2021).

    CAS 

    Google Scholar
     

  • Ohashi, M. et al. An enzymatic Alder-ene reaction. Nature 586, 64–69 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. An NmrA-like enzyme-catalysed redox-mediated Diels–Alder cycloaddition with anti-selectivity. Nat. Chem. 15, 526–534 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, P. R., Smith, G. D. & Young, I. G. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate. Biochemistry 12, 3492–3498 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020). This work reports a tour de force in combining chemical synthesis with enzymatic late-stage functionalization to provide complex molecules with structural diversity.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyon, T. J. et al. Chemoenzymatic o-quinone methide formation. J. Am. Chem. Soc. 141, 20269–20277 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Santen, J. A. et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00363-7 (2021).

  • Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872–877 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Simurdiak, M. & Zhao, H. Reconstitution and characterization of aminopyrrolnitrin oxygenase, a Rieske N-oxygenase that catalyzes unusual arylamine oxidation. J. Biol. Chem. 280, 36719–36728 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Nelp, M. T. & Bandarian, V. A single enzyme transforms a carboxylic acid into a nitrile through an amide intermediate. Angew. Chem. Int. Ed. 54, 10627–10629 (2015).

    CAS 

    Google Scholar
     

  • Woodyer, R. D. et al. Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem. Biol. 13, 1171–1182 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Sugai, Y., Katsuyama, Y. & Ohnishi, Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat. Chem. Biol. 12, 73–75 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Hagan, D. & Deng, H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem. Rev. 115, 634–649 (2015).

    PubMed 

    Google Scholar
     

  • Galván, A. E. et al. Identification of the biosynthetic gene cluster for the organoarsenical antibiotic arsinothricin. Microbiol. Spectr. 9, e00502–e00521 (2021).


    Google Scholar
     

  • Kayrouz, C. M., Huang, J., Hauser, N. & Seyedsayamdost, M. R. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610, 199–204 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X., Liu, J. & Zhang, W. De novo biosynthesis of terminal alkyne-labeled natural products. Nat. Chem. Biol. 11, 115–120 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Marchand, J. A. et al. Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature 567, 420–424 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, M. C. et al. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341, 1089–1094 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Y.-L., He, H.-Y., Higgins, M. A. & Ryan, K. S. A heme-dependent enzyme forms the nitrogen–nitrogen bond in piperazate. Nat. Chem. Biol. 13, 836–838 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Ng, T. L., Rohac, R., Mitchell, A. J., Boal, A. K. & Balskus, E. P. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin. Nature 566, 94–99 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Rio Flores, A. et al. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nat. Chem. Biol. 17, 1305–1313 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler, C. K., Schrittwieser, J. H. & Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci. 7, 55–71 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinnie, S. M. K. et al. Total enzyme syntheses of napyradiomycins A1 and B1. J. Am. Chem. Soc. 140, 17840–17845 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Li, F., King-Smith, E. & Renata, H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat. Chem. 12, 173–179 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W., McArthur, J. B. & Chen, X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr. Res. 472, 86–97 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • DeAngelis, P. L., Liu, J. & Linhardt, R. J. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology 23, 764–777 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat. Commun. 10, 2383 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korman, T. P., Opgenorth, P. H. & Bowie, J. U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 8, 15526 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherkhanov, S. et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat. Commun. 11, 4292 (2020). This work is one of a series of papers demonstrating that entire metabolic pathways can be reconstituted from glucose in vitro, enabling the total biosynthesis of a broad range of molecules from biomass using isolated enzyme, resulting in yields higher than tolerated by living systems.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valliere, M. A., Korman, T. P., Arbing, M. A. & Bowie, J. U. A bio-inspired cell-free system for cannabinoid production from inexpensive inputs. Nat. Chem. Biol. 16, 1427–1433 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N. S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019). This work is a landmark in demonstrating the use of nine enzymes in an abiotic cascade to produce the drug islatravir by scientists at Merck, highlighting a creative pathway designed to produce a nucleotide analogue that contains both a fluorine and an alkyne substituent. Notably this cascade is less than half the number of steps of preceding chemical routes and provides improved stereochemical purity and atom economy at every step.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schomburg, I. et al. The BRENDA enzyme information system–from a database to an expert system. J. Biotechnol. 261, 194–206 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, D. et al. EnzyMine: a comprehensive database for enzyme function annotation with enzymatic reaction chemical feature. Database https://doi.org/10.1093/database/baaa065 (2020).

  • Burgener, S., Luo, S., McLean, R., Miller, T. E. & Erb, T. J. A roadmap towards integrated catalytic systems of the future. Nat. Catal. 3, 186–192 (2020).


    Google Scholar
     

  • Kiefer, A. F., Liu, Y., Gummerer, R., Jäger, C. & Deska, J. An artificial in vitro metabolism to angiopterlactone B inspired by traditional retrosynthesis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202301178 (2023).

  • D’Agostino, P. M., Seel, C. J., Ji, X., Gulder, T. & Gulder, T. A. M. Biosynthesis of cyanobacterin, a paradigm for furanolide core structure assembly. Nat. Chem. Biol. 18, 652–658 (2022).

    PubMed 

    Google Scholar
     

  • Stephanopoulos, G. N., Aristidou, A. A. & Nielsen, J. Metabolic Engineering: Principles and Methodologies (Academic Press, 1998).

  • Keasling, J. D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    CAS 

    Google Scholar
     

  • Xiong, M., Schneiderman, D. K., Bates, F. S., Hillmyer, M. A. & Zhang, K. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl Acad. Sci. USA 111, 8357–8362 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasan, P. & Smolke, C. D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585, 614–619 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, D. G., McBride, J. E., Joe Shaw, A. & Lynd, L. R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23, 396–405 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022). This work demonstrates the highly successful evolution of an enzyme that can depolymerize and recycle a plastic. By using an enzyme to hydrolyze polyethylene terephthalate (PET), monomers are cleanly produced that can be repolymerized.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seifrid, M. et al. Autonomous chemical experiments: challenges and perspectives on establishing a self-driving lab. Acc. Chem. Res. 55, 2454–2466 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Markin, C. J. et al. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland-Moritz, D. A. et al. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale. Angew. Chem. Int. Ed. 59, 4470–4477 (2020). This work describes the development of a high-throughput liquid-droplet screening system that can analyse 25-nl samples at a rate of 15,000 in 6 h by mass spectrometery, greatly increasing the potential for a general screening approach for engineering, characterization and discovery of enzymes.

    CAS 

    Google Scholar
     

  • Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023). This work highlights how technological advances in analytical chemistry can be creatively applied to biological processes to reveal information. Here the authors combine transcriptomics and metabolomics with single-cell resolution in a medicinal plant to rapidly identify and discover entire biosynthetic pathways while tracking the movement of intermediates between compartments.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872–877 (2021).This work demonstrates a pipeline for the discovery of natural products, allowing for the detection of the products ofsilentbiosynthetic gene clusters while rapidly determining their structure via microcrystal electron diffraction.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).

    CAS 

    Google Scholar
     

  • Garg, N. K., Caspi, D. D. & Stoltz, B. M. The total synthesis of (+)-dragmacidin F. J. Am. Chem. Soc. 126, 9552–9553 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Lichman, B. R. et al. The evolutionary origins of the cat attractant nepetalactone in catnip. Sci. Adv. 6, eaba0721 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link