Extensional tectonics and two-stage crustal accretion at oceanic transform faults

-


  • 1.

    Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).

    ADS 

    Google Scholar
     

  • 2.

    Menard, H. W. Extension of northeastern-Pacific fracture zones. Science 155, 72–74 (1967).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Sykes, L. R. Mechanism of earthquakes and nature of faulting on the mid‐oceanic ridges. J. Geophys. Res. 72, 2131–2153 (1967).

    ADS 

    Google Scholar
     

  • 4.

    Sandwell, D. T. Thermomechanical evolution of oceanic fracture zones. J. Geophys. Res. 89, 11401–11413 (1984).

    ADS 

    Google Scholar
     

  • 5.

    Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    ADS 

    Google Scholar
     

  • 7.

    Morgan, J. P. & Parmentier, E. M. Lithospheric stress near a ridge‐transform intersection. Geophys. Res. Lett. 11, 113–116 (1984).

    ADS 

    Google Scholar
     

  • 8.

    Fox, P. J. & Gallo, D. G. A tectonic model for ridge transform ridge plate boundaries – implications for the structure of oceanic lithosphere. Tectonophysics 104, 205–242 (1984).

    ADS 

    Google Scholar
     

  • 9.

    Fornari, D. J. et al. Structure and topography of the Siqueiros transform fault system: evidence for the development of intra-transform spreading centers. Mar. Geophys. Res. 11, 263–299 (1989).


    Google Scholar
     

  • 10.

    Gregg, P. M., Lin, J., Behn, M. D. & Montesi, L. G. J. Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature 448, 183–187 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Searle, R. C., Thomas, M. V. & Jones, E. J. W. Morphology and tectonics of the Romanche transform and its environs. Mar. Geophys. Res. 16, 427–453 (1994).


    Google Scholar
     

  • 12.

    Karson, J. A. & Dick, H. J. B. Tectonics of ridge-transform intersections at the Kane fracture zone. Mar. Geophys. Res. 6, 51–98 (1983).


    Google Scholar
     

  • 13.

    Gallo, D. G., Fox, P. J. & Macdonald, K. C. A Seabeam investigation of the Clipperton transform fault: the morphotectonic expression of a east slipping transform boundary. J. Geophys. Res. 91, 3455–3467 (1986).

    ADS 

    Google Scholar
     

  • 14.

    Barth, G. A., Kastens, K. A. & Klein, E. M. The origin of bathymetric highs at ridge-transform intersections: a multi-disciplinary case study at the Clipperton fracture zone. Mar. Geophys. Res. 16, 1–50 (1994).


    Google Scholar
     

  • 15.

    Davis, E. E. & Lister, C. R. B. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett. 21, 405–413 (1974).

    ADS 

    Google Scholar
     

  • 16.

    Behn, M. D., Boettcher, M. S. & Hirth, G. Thermal structure of oceanic transform faults. Geology 35, 307–310 (2007).

    ADS 

    Google Scholar
     

  • 17.

    McKenzie, D. Finite deformation during fluid flow. Geophys. J. R. Astron. Soc. 58, 689–715 (1979).

    ADS 
    MATH 

    Google Scholar
     

  • 18.

    Roland, E., Behn, M. D. & Hirth, G. Thermal‐mechanical behavior of oceanic transform faults: implications for the spatial distribution of seismicity. Geochem. Geophys. Geosyst. 11, Q07001 (2010).

    ADS 

    Google Scholar
     

  • 19.

    Rüpke, L. H. & Hasenclever, J. Global rates of mantle serpentinization and H2 production at oceanic transform faults in 3-D geodynamic models. Geophys. Res. Lett. 44, 6726–6734 (2017).

    ADS 

    Google Scholar
     

  • 20.

    McGuire, J. et al. Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nat. Geosci. 5, 336–341 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Braunmiller, J. & Nabelek, J. Segmentation of the Blanco transform fault zone from earthquake analysis: complex tectonics of an oceanic transform fault. J. Geophys. Res. 113, B07108 (2008).

    ADS 

    Google Scholar
     

  • 22.

    Abercrombie, R. E. & Ekström, G. Earthquake slip on oceanic transform faults. Nature 410, 74–77 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Grevemeyer, I. Upper mantle structure beneath the Mid-Atlantic Ridge from regional waveform modeling. Bull. Seismol. Soc. Am. 110, 18–25 (2020).


    Google Scholar
     

  • 24.

    Wolfe, C. J., Bergman, E. A. & Solomon, S. C. Oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the adjacent lithosphere. J. Geophys. Res. 98, 16187–16211 (1993).

    ADS 

    Google Scholar
     

  • 25.

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow spreading class of ocean ridge. Nature 426, 405–412 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Rosendahl, B. P. Architecture of continental rifts with special reference to East Africa. Annu. Rev. Earth Planet. Sci. 15, 445–503 (1987).

    ADS 

    Google Scholar
     

  • 27.

    Lin, J. & Parmentier, E. M. Mechanisms of lithospheric extension at mid‐ocean ridges. Geophys. J. Int. 96, 1–22 (1989).

    ADS 

    Google Scholar
     

  • 28.

    Wilcock, W. S. D., Purdy, G. M. & Solomon, S. C. Microearthquake evidence for extension across the Kane transform fault. J. Geophys. Res. 95, 15439–15462 (1990).

    ADS 

    Google Scholar
     

  • 29.

    Collette, B. J. Thermal contraction joints in a spreading seafloor as origin of fracture zones. Nature 251, 299–300 (1974).

    ADS 

    Google Scholar
     

  • 30.

    Turcotte, D. L. Are transform faults thermal contraction cracks? J. Geophys. Res. 79, 2573–2577 (1974).

    ADS 

    Google Scholar
     

  • 31.

    Hey, R. N., Menard, H. W., Atwater, T. M. & Caress, D. W. Changes in direction of seafloor spreading revisited. J. Geophys. Res. 93, 2803–2812 (1988).

    ADS 

    Google Scholar
     

  • 32.

    Pockalny, R. A., Fox, P. J., Fornari, D. J., Macdonald, K. C. & Perfit, M. R. Tectonic reconstruction of the Clipperton and Siqueiros fracture zones: evidence and consequences of plate motion change for the last 3 Myr. J. Geophys. Res. 102, 3167–3181 (1997).

    ADS 

    Google Scholar
     

  • 33.

    Bercovici, D., Dick, H. & Wagner, T. Nonlinear viscoelasticity and the formation of transverse ridges. J. Geophys. Res. 97, 14195–14206 (1992).

    ADS 

    Google Scholar
     

  • 34.

    Kelley, D. S. et al. An off-axis hydrothermal-vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Lonsdale, P. Tectonic and magmatic ridges in the Eltanin fault system, South Pacific. Mar. Geophys. Res. 8, 203–242 (1986).


    Google Scholar
     

  • 36.

    Barth, G. A. Oceanic crust thickens approaching the Clipperton fracture zone. Mar. Geophys. Res. 16, 51–64 (1994).


    Google Scholar
     

  • 37.

    Lin, J. & Morgan, J. P. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett. 19, 13–16 (1992).

    ADS 

    Google Scholar
     

  • 38.

    Macdonald, K. C. & Fox, P. J. Overlapping spreading centres: new accretion geometry on the East Pacific Rise. Nature 302, 55–58 (1983).

    ADS 

    Google Scholar
     

  • 39.

    Tucholke, B. E. & Lin, J. A geological model for the structure of ridge segments in slow spreading ocean crust. J. Geophys. Res. 99, 11937–11958 (1994).

    ADS 

    Google Scholar
     

  • 40.

    Fox, P. J. et al. The geology of the oceanographer transform: the transform domain. Mar. Geophys. Res. 7, 329–358 (1985).


    Google Scholar
     

  • 41.

    Caress, D. W. & Chayes, D. N. MB-System: mapping the seafloor, http://www.mbari.org/products/research-software/mb-system (2017).

  • 42.

    Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos 94, 409 (2013).

    ADS 

    Google Scholar
     

  • 43.

    Mishra, J. K. & Gordon, R. G. The rigid-plate and shrinking-plate hypotheses: implications for the azimuths of transform faults. Tectonics 35, 1827–1842 (2016).

    ADS 

    Google Scholar
     

  • 44.

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    ADS 

    Google Scholar
     

  • 45.

    Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

    ADS 

    Google Scholar
     

  • 46.

    Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2004).

  • 47.

    Glerum, A., Thieulot, C., Fraters, M., Blom, C. & Spakman, W. Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction. Solid Earth 9, 267–294 (2018).

    ADS 

    Google Scholar
     

  • 48.

    Jarvis, G. T. & McKenzie, D. P. Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett. 48, 42–52 (1980).

    ADS 

    Google Scholar
     

  • 49.

    Ligi, M., Bonatti, E., Gasperini, L. & Poliakov, A. N. B. Oceanic broad multifault transform plate boundaries. Geology 30, 11–14 (2002).

    ADS 

    Google Scholar
     

  • 50.

    Harmon, N. et al. Marine geophysical investigation of the Chain fracture zone in the equatorial Atlantic from the PI-LAB experiment. J. Geophys. Res. 123, 11016–11030 (2018).

    ADS 

    Google Scholar
     

  • 51.

    Reston, T. J. et al. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S. Earth Planet. Sci. Lett. 200, 255–269 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Bourgois, J. et al. Glacial‐interglacial trench supply variation, spreading‐ridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45–48°S). J. Geophys. Res. 105, 8355–8386 (2000).

    ADS 

    Google Scholar
     

  • 53.

    Sato, T. et al. Magmatic activities on the Southwest Indian Ridge between 35°E and 40°E, the closest segment to the Marion hotspot. Geochem. Geophys. Geosyst. 14, 5286–5307 (2013).

    ADS 

    Google Scholar
     



  • Source link

    Ariel Shapiro
    Ariel Shapiro
    Uncovering the latest of tech and business.

    Latest news

    The Best High School Graduation Gifts

    For the grad who is constantly jotting down random thoughts, mapping out to-do lists, or prefers hand-written notes,...

    The 13 Best Fans for Every Use

    Honorable MentionsShark FlexBreeze Hydro Go for $130: I love the original Shark FlexBreeze (above), so I was very...

    Are Meal Kits Cheaper than Groceries in 2025? We Break It Down

    The standard knock, of course, is that meal kits are expensive: anywhere from $7 to $14 a portion,...

    How the Signal Knockoff App TeleMessage Got Hacked in 20 Minutes

    They tried logging into secure.telemessage.com using a pair of these credentials and discovered that they had just hacked...

    What the Polestar 4 Lacks in Rear Windows It Makes Up in Personality

    Polestar, according to the original mission statement, is an electric premium brand that puts performance and design at...

    Y Combinator startup Firecrawl is ready to pay $1M to hire three AI agents as employees

    Y Combinator-backed startup Firecrawl is back on the hunt for AI agent employees. As we reported back in...

    Must read

    You might also likeRELATED
    Recommended to you