Recovery of isolated lithium through discharged state calendar ageing – Nature

    0
    1
    Recovery of isolated lithium through discharged state calendar ageing – Nature


  • Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geise, N. R., Kasse, R. M., Weker, J. N., Steinrück, H.-G. & Toney, M. F. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction. Chem. Mater. 33, 7537–7545 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 9, 1902254 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, K.-H. et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Merrill, L. C., Rosenberg, S. G., Jungjohann, K. L. & Harrison, K. L. Uncovering the relationship between aging and cycling on lithium metal battery self-discharge. ACS Appl. Energy Mater. 4, 7589–7598 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wood, S. M. et al. Predicting calendar aging in lithium metal secondary batteries: the impacts of solid electrolyte interphase composition and stability. Adv. Energy Mater. 8, 1801427 (2018).

    Article 

    Google Scholar
     

  • Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, C. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, C. et al. Chemically induced activity recovery of isolated lithium in anode-free lithium metal batteries. Nano Lett. 22, 9268–9274 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merrill, L. C. et al. Role of coatings as artificial solid electrolyte interphases on lithium metal self-discharge. J. Phys. Chem. C 126, 17490–17501 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal? ACS Energy Lett. 4, 1349–1355 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhuo, Z. et al. Breathing and oscillating growth of solid-electrolyte-interphase upon electrochemical cycling. Chem. Commun. 54, 814–817 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez, A. J. et al. Plan-view Operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Lett. 5, 994–1004 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. R., Yan, C., Ding, J. F., Peng, H. J. & Zhang, Q. New insights into “dead lithium” during stripping in lithium metal batteries. J. Energy Chem. 62, 289–294 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Efficient lithium metal cycling over a wide range of pressures from an anion-derived solid-electrolyte interphase framework. ACS Energy Lett. 6, 816–825 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. & Zhu, M. Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical model of Li-ion batteries. ECS Trans. 61, 43–61 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lv, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article 

    Google Scholar
     

  • Han, B. et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741–3752 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyakhire, S. T. et al. Electrical resistance of the current collector controls lithium morphology. Nat. Comm. 13, 3986 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link