The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis

0
The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis


  • 1.

    Jaiswal, S. et al. Clonal hematopoiesis and threat of atherosclerotic heart problems. N. Engl. J. Med. 377, 111–121 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 complete genomes. Nature 586, 763–768 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Benjamin, E. J. et al. Heart illness and stroke statistics—2019 replace: a report from the American Heart Association. Circulation 139, e56–e528 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Ridker, P. M. et al. Antiinflammatory remedy with Canakinumab for atherosclerotic illness. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    José, J. et al. Clonal hematopoiesis related to TET2 deficiency accelerates atherosclerosis growth in mice. Science 355, 842–847 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 6.

    Landolfi, R. et al. Efficacy and security of low-dose aspirin in polycythemia vera. N. Engl. J. Med. 350, 114–124 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Cordua, S. et al. Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish normal inhabitants. Blood 134, 469–479 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Wang, W. et al. Macrophage irritation, erythrophagocytosis, and accelerated atherosclerosis in Jak2V617F mice. Circ. Res. 123, e35–e47 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Mullally, A. et al. Physiological Jak2V617F expression causes a deadly myeloproliferative neoplasm with differential results on hematopoietic stem and progenitor cells. Cancer Cell 17, 584–596 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Edelmann, B. et al. JAK2-V617F promotes venous thrombosis by means of β1/β2 integrin activation. J. Clin. Invest. 128, 4359–4371 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Snippert, H. J. et al. Intestinal crypt homeostasis outcomes from impartial competitors between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Liu, D. J. et al. Exome-wide affiliation examine of plasma lipids in >300,000 people. Nat. Genet. 49, 1758–1766 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Hansson, G. Okay., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Anderson, Okay. L. et al. PU.1 and the granulocyte- and macrophage colony-stimulating issue receptors play distinct roles in late-stage myeloid cell differentiation. Blood 94, 2310–2318 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Rajavashisth, T. et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 101, 2702–2710 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Celada, A. et al. The transcription issue PU.1 is concerned in macrophage proliferation. J. Exp. Med. 184, 61–69 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Shimada, Okay. et al. Oxidized mitochondrial DNA prompts the NLRP3 inflammasome throughout apoptosis. Immunity 36, 401–414 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell dying and tissue harm. Science 354, 765–768 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Schwartz, D. M. et al. JAK inhibition as a therapeutic technique for immune and inflammatory ailments. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Katherine, L. et al. Cloning a novel member of the human interferon-inducible gene household related to management of tumorigenicity in a mannequin of human melanoma. Oncogene 15, 453–457 (1997).

    Article 
    CAS 

    Google Scholar
     

  • 22.

    Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by ldl cholesterol crystals. Nature 464, 1357–1361 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Paulin, N. et al. Double-strand DNA sensing Aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation 138, 321–323 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Zernecke, A. et al. Meta-analysis of leukocyte range in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Mesa, R. A. et al. Effects of ruxolitinib remedy on metabolic and dietary parameters in sufferers with myelofibrosis from COMFORT-I. Clin. Lymphoma Myeloma Leuk. 15, 214–221.e1 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Rao, T. N. et al. JAK2-mutant hematopoietic cells show metabolic alterations that may be focused to deal with myeloproliferative neoplasms. Blood 134, 1832–1846 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Choudhury, R. P. et al. Arterial results of Canakinumab in sufferers with atherosclerosis and sort 2 diabetes or glucose intolerance. J. Am. Coll. Cardiol. 68, 1769–1780 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from residing macrophages. Immunity 48, 35–44.e6 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular threat in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Westerterp, M. et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 138, 898–912 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Vromman, A. et al. Stage-dependent differential results of interleukin-1 isoforms on experimental atherosclerosis. Eur. Heart J. 40, 2482–2491 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Mullally, A. et al. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine mannequin of Jak2V617F-mediated polycythemia vera. Blood 120, 166–172 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Iacobucci, I. et al. Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell 29, 186–200 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Maude, S. L. et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft fashions of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125, 1759–1767 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Thomas, D. G. et al. LXR suppresses inflammatory gene expression and neutrophil migration by means of cis-repression and ldl cholesterol efflux. Cell Rep. 25, 3774–3785.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Thomas, P. D. et al. PANTHER: a library of protein households and subfamilies listed by perform. Genome Res. 13, 2129–2141 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Kotini, A. G. et al. Stage-specific human induced pluripotent stem cells map the development of myeloid transformation to transplantable leukemia. Cell Stem Cell 20, 315–328.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Fidler, T. P. et al. Glucose metabolism is required for platelet hyperactivation in a murine mannequin of kind 1 diabetes. Diabetes 68, 932–938 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the mixing of genomic datasets with the R/Bioconductor bundle biomaRt. Nat. Protocols 4, 1184–1191 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link